Effect of Unused Columns on Query Performance

Max Ganz II @ Redshift Research Project

5th March 2023

Abstract

Redshift is column-store and as such in principle queries are unaffected
by the unused columns in the tables being queried. In practise, accessing
any single column is unaffected by the number of columns, but, tentatively,
it looks like accessing multiple columns shows that the more columns are
present between a column and the final column in the table, the slower it
is to access the column, and so the more columns are present in a table,
the slower access becomes for all columns. The slowdown, even when
there are 1600 columns, is very small for dc2.large and ra3.xlplus, but
is much larger for ds2.xlarge. However, for normally sized tables, up to
say 100 columns, even on ds2.xlarge the slowdown is very small.

Contents
Introduction
Test Method

Results
Performance Test
dc2.large, 2 nodes, first columno
dc2.large, 2 nodes, last columno
dc2.large, 2 nodes, first and second column
dc2.large, 2 nodes, first and last column
ds2.xlarge, 2 nodes, first column
ds2.xlarge, 2 nodes, last column
ds2.xlarge, 2 nodes, first and second column
ds2.xlarge, 2 nodes, first and last column
ra3.xIplus, 2 nodes, first column
rad.xlplus, 2 nodes, last column
ra3.xlplus, 2 nodes, first and second column
ra3.xlplus, 2 nodes, first and last column

Discussion
Conclusions

Unexpected Findings

L UL OU UL OU O i s B W W W

=}

(=)

Further Questions 9
Credits 9

Revision History
VI e

Appendix A : Raw Data Dump 11

Introduction

Redshift is a column-store database and as such tables are broken up into their
constituent columns and each column is stored separately on disk.

A query typically will use only some rather than all of the columns in a table, and
naturally the more columns are used, the slower the query, since more data has
to be read from disk and more work has to be done to perform materialization,
which is the task of joining the separated columns back up into contiguous rows
for return to the client.

However, there is a question as to whether or not the columns which are not
used by a query have a performance impact on the query. If this is so, then the
more columns a table has, even though they are not used by a query, the more
harmful for performance.

In principle those extra columns, being unused, should have no impact on query
performance. The question is whether or not this is true in practise.

Test Method

The basic method is that we create a test table, and issue a test query on the
table, and measure the time taken for the query to execute.

There are four test queries.

Each test query is issued five times, with the slowest and fastest results being
discarded.

The test table is dropped, created and repopulated for every iteration, and for
every test query; which is to say, all the test tables are identical, but each table
only ever has one query issued on it.

The test table is varied, by the number of columns (2, 800, and 1600) and the
number of blocks per column, per slice (1 and 8), with the five iterations of the
four queries repeated on every variant of the table.

The table has key distribution. The even has off-by-one bugs when it comes to
distribution rows, so cannot be used, as you end up with an uneven number of
blocks on the different slices.

The value stored in the distribution key column, and the number of rows, are
chosen to ensure each slice has an equal number of exactly completely full blocks.
Validation checks are present in the test code to ensure each slice does in fact
has the correct number of blocks with the correct number of rows.

For all columns the data type is bigint and not null is specified, encoding is
raw, and the table is fully vacuumed and analyzed. Result caching is disabled,
and the analysis threshold set to 0.

The tests described above are performed on three clusters, all two node, a
dc2.large, a ds2.xlarge and an ra3.xlplus.

How long a query took to execute is taken directly from the system tables, and
so mark the times internal to Redshift as to when the query execution started
and ended (queuing and compile times are excluded).

The four test queries are;

1. find the sum() of the first column

2. find the sum() of the last column

3. find the sum() of the first column, when the second column, with one
subtracted from its value, is greater than -10

4. find the sum() of the first column, when the last column, with one sub-
tracted from its value, is greater than -10

The purpose of the “subtract one” is to defeat use of the Zone Map, and the
comparison, greater than -10, ensures all rows are used in the sum(). This is
because every column in a row has the same value, and that value is always 0
or greater.

These tests then measure how long it takes to sum() the first column, and the
last column, and to access pairs of columns (first and second, first and last), as
we vary the number of columns, the amount of data, and the node type.

Results

See Appendix A for the Python pprint dump of the results dictionary.

The X-axis is the number of exactly full blocks per column, per slice, in the
table.

The Y-axis is the number of columns in the table.

The individual results are “mean/standard deviation” of the duration of the test
queries in seconds.

As ever, five trials occurred, with the slowest and fastest being discarded.

Test duration was 14,375 seconds.

Performance Test

dc2.large, 2 nodes, first column

1

8

2 0.007/0.000
800 0.008,/0.000
1600 0.008/0.000

0.013/0.000
0.012/0.000
0.013/0.000

dc2.large, 2 nodes, last column

1

8

2 0.011/0.003
800 0.008/0.000
1600 0.008/0.001

0.012/0.000
0.013,/0.000
0.013,/0.000

dc2.large, 2 nodes, first and second column

1

8

2 0.012/0.003
800 0.009/0.000
1600 0.009/0.001

0.018/0.002
0.025/0.000
0.026/0.001

dc2.large, 2 nodes, first and last column

1

8

2 0.009/0.001
800 0.009/0.000
1600 0.008/0.000

0.019/0.001
0.017/0.000
0.018/0.002

ds2.xlarge, 2 nodes, first column

1

8

2 0.006,/0.000
800 0.006,/0.000
1600 0.007/0.000

0.010/0.001
0.010/0.001
0.012/0.001

ds2.xlarge, 2 nodes, last column

1

8

2 0.006,/0.000
800 0.007/0.000
1600 0.007/0.000

0.011/0.002
0.010/0.000
0.011/0.001

ds2.xlarge, 2 nodes, first and second column

1

8

2 0.006,/0.000
800 0.007/0.000
1600 0.007/0.000

0.014/0.001
0.091/0.002
0.145/0.014

ds2.xlarge, 2 nodes, first and last column

ra3.xlplus,

ra3.xlplus,

ra3.xlplus,

ra3.xlplus,

1

8

2 0.007/0.000
800 0.008,/0.000
1600 0.008/0.001

0.015/0.001
0.015/0.000
0.014,/0.001

2 nodes, first column

1

8

2 0.008/0.002
800 0.006,/0.000
1600 0.006/0.000

0.009/0.001
0.008,/0.001
0.009/0.001

2 nodes, last column

1

8

2 0.005/0.000
800 0.006,/0.000
1600 0.006/0.000

0.008,/0.001
0.009/0.001
0.008,/0.001

2 nodes, first and second column

1

8

2 0.006,/0.000
800 0.006,/0.001
1600 0.007/0.000

0.011/0.002
0.019/0.000
0.019/0.000

2 nodes, first and last column

1

8

2 0.006/0.001
800 0.006,/0.000
1600 0.007/0.000

0.011/0.001
0.012/0.001
0.011/0.001

Discussion

The first point of note is that for all tests with one block per column per slice,
there are no significant differences in performance, for any of the SQL test
queries, no matter how many columns there are, no matter which node type is
used.

However, when we move to the eight block tests, differences do emerge.

The query times are of course longer, because eight blocks are being read per
column per slice. What matters is not how long queries take as such, but
differences in how long the queries take as the number of columns (and node
types) vary.

Looking first at dc2.large, we see that when accessing the first column on its
own, or the last column on its own, the number of columns makes no difference.

However, we have next the two test queries which access a pair of columns.
As with increasing the number of blocks, these queries will be slower - they
are reading two columns not one - but as before, we are only looking at the
difference in performance as we vary the number of columns.

What we find is that when accessing the first and second column, moving from
two columns to 800 or 1600 results in a slowdown, from 0.018 seconds to 0.025
and 0.026 seconds, respectively. This is very slight, but it seems to be a real
change.

However, when looking at accessing the first and last column, we again see no
significant change in performance as the number of columns change.

Very tentatively then, since we have so little evidence so far, it looks like the
last columns in a table are accessed most quickly, and the first most slowly.

Moving on to ds2.xlarge, as before, accessing the first or last column makes
no difference, and accessing first and last shows no significant change.

Now, as before, accessing first and second shows a slowdown, but the slowdown
is far more pronounced with this node type. Query time goes from 0.014, to
0.091, to 0.145 seconds. That’s a lot.

Finally, moving to ra3.xlplus, we see the same pattern, but with a change in
performance for first and second on much the same order as for dc2.large.

Conclusions

When a query accesses a single column only, the number of columns in a table
has no effect on performance.

When a query accesses the first and last columns, we also see the number of
columns in a table has no effect on performance.

However, when a query accesses the first and second columns, we see the number
of columns in a table does have an effect on performance. As the number of
columns increases, the query becomes slower.

This slowdown effect is very small on dc2.large and ra3.xlplus, with the
query duration going from about 0.011 second for 2 columns, to about 0.019
seconds for 1600 columns, but much larger on ds2.xlarge, which goes from
0.014 seconds to 0.145 seconds.

Tentatively, we can think to generalize this to say that the more columns there
are between an accessed column and the final column in the table, the slower
the column is to access, and so the more columns are in the table, the slower ac-
cessing a column becomes, because there are increasingly more columns between
the column and the final column in the table.

In other words, the closer a column is to the end of the table, the faster it is to
access, and the closer a column is to the start of the table, the slower.

The difference in performance is very small on dc2.large and ra3.xlplus,
even with the worst case of 1600 columns, but looks considerable on ds2.xlarge,
although having said that, it’s a pretty rare table which exceeds even 30 columns,
and for tables of this size, the slowdown even on ds2.xlarge is going to be very
small.

Unexpected Findings

When you investigate Redshift, there are always unexpected findings.

1. The distribution style even appears to have off-by-one errors. When pop-
ulating four slices with one block each, where each block has 130,994 rows
(the maximum number of bigint with raw encoding per block), even
will not give you one block per slice, but two slices with one block which
is short one record, and the other two slices both have two blocks, one
completely full and the next with one record.

It won’t matter in normal use, but it seems indicative of a lack of testing
or testing but a lack of care to fix such errors, and it was a problem for
me with this testing work, where I need to exactly control blocks per
slice. It took some hours to implement my own solution using key based
distribution, and this solution has unavoidable drawbacks compared to
using even.

2. Not quite an unexpected finding, since I knew this already from earlier
work, but I'm listing it here as I had to work around this issue and I
would have discovered it here if I'd not already known; the slice_num()
function appears very rarely to give the wrong slice number.

I want to use slice_num() because where I’'m using key, I need to know
which slice a given distribution key value will go to, so I can deliberately
put rows on each slice.

Where slice_num() is unreliable, what has to be done instead is write
a single row, then check stv_blocklist to find the column number, and
then truncate the table, and then repeat until a value is found for each
slice.

So to work around one bug, I had to work around another bug.

You can’t help but feel at times Redshift is a bit of a clunker.

Figure 1: Redshift in the eyes of the dev team

Figure 2: The rest of us

3. I realised something which actually came into being a little while ago;
when the devs introduced automatic sortkey selection, and made this the
default, it is not longer possible to keep unsorted tables.

To be more exact, you can create unsorted tables, but because such tables
are created by not specifying a sorting type, and now not specifying a
sorting type has Redshift set the sorting type to auto, which gives Redshift
carte blanche to change the sorting type, when you make an unsorted table,
it can stop being an unsorted table at any time.

This breaks existing systems, because deliberately using unsorted tables
is a perfectly valid design choice (with small tables and many slices, they
save a lot of disk space), and it also breaks my test work, because I've
been using unsorted tables as they’re simpler to work with by not having
an unsorted segment.

I have very strong feelings about this. The devs should never repeat never

break existing systems - let alone doing so silently - and they should never
get in the way of system developers and admin running their own cluster.

The problem is I suspect that the devs don’t know when they’re making
breaking changes; this isn’t the first time. I suspect all their work is based
on fleet telemetry, and they’re not actually in touch with users at all.

Further Questions

1. What happens with queries accessing three columns, ideally the first, sec-
ond and third columns? do we see a further slowdown over the slowdown
for the first and second columns, on the order we’d expect for the extra
column, the third column, which should be the next slowest column to
access.

Credits

This white paper was published on r/aws, leading to a review by one of the
moderators, which identified two flaws in the test method. These were corrected,
the test re-run, the white paper updated with the results, and then republished.

Revision History

vl

o Initial release.

v2

o Metadata changes. No content changes.

v3

After posting in r/aws, a subreddit mod reviewed the white paper and pointed
out flaws in the test method. As a result, the following changes were made;

e Test method now for each test specifies the test table size in blocks per
column per slice, rather than total number of rows. The blocks are exactly
full.

e The test table is now dropped, created and populated between every test
SQL query, to help defeat caching.

e The extra work create tables has made a full test run take many hours,
so the set of numbers of columns to test has been reduced to 2, 800 and
1600.

v4
o No content changes; path to image file(s) changed.

vH

o Changed to Redshift Research Project (AWS have a copyright on “Amazon
Redshift”).

10

Appendix A : Raw Data Dump

Note these results are completely unprocessed; they are a raw dump of the
results, so the original, wholly unprocessed data, is available.

{'proofs': {'dc2.large': {2: {}}, 'ds2.xlarge': {2: {}}, 'ra3.xlplus': {2: {}}},
'tests': {'dc2.large': {2: {1: {2: {'first': [0.00983100000000001,
0.007121,
0.007106,
0.007927,
0.006986] ,
'first and last': [0.009111,
0.007817,
0.008855,
0.013065,
0.007816],
'first and second': [0.009239,
0.021148,
0.015663,
0.010932,
0.008843],
'last': [0.013651,
0.006955,
0.007586,
0.05611,
0.012056]%},
800: {'first': [0.007494,
0.007512,
0.007573,
0.008072,
0.00712],
'first and last': [0.008437,
0.008456,
0.008418,
0.008853,
0.009487],
'first and second': [0.00826,
0.008568,
0.008834,
0.008985,
0.019111],
'last': [0.017022,
.007516,
.007351,
.007447,
.007659]},
1600: {'first': [0.007455,
0.008847,
0.007901,
0.00799,

O O O O

11

0.011692],
'first and last': [0.009078,

0.008211,
0.00825,
0.008508,
0.007939],
'first and second': [0.009466,
0.011271,
0.008583,
0.008835,
0.010071],
'last': [0.007188,
0.007826,
0.009507,
0.010988,

0.007804]}},

: {2: {'first': [0.013255,

0.012184,
0.01709,
0.012838,
0.012969],
'first and last': [0.028075,
0.01886,
0.016114,
0.020439,
0.016953],
'first and second': [0.02386,
0.020475,
0.017573,
0.016527,
0.016873],
'last': [0.012078,
0.012822,
0.011611,
0.012327,
0.0120861%},
800: {'first': [0.012186,
0.012387,
0.012328,
0.013211,
0.012549],
'first and last': [0.016758,
0.017129,
0.017125,
0.018622,
0.017386],
'first and second': [0.025634,
0.025044,
0.027201,
0.024404,

12

0.024922],
'last': [0.01231,

0.015804,
0.013119,
0.012416,
0.013035]},
1600: {'first': [0.012601,
0.014621,
0.012467,
0.012254,
0.012759],
'first and last': [0.020315,
0.016714,
0.016645,
0.021115,
0.016532],
'first and second': [0.035006,
0.024816,
0.026592,
0.026567,
0.02428],
'last': [0.013417,
0.015566,
0.013112,
0.012518,

0.012926]13}3}3}%,
'ds2.xlarge': {2: {1: {2: {'first': [0.010581,
0.006096,
0.005874,
0.006064,
0.005705] ,
'first and last': [0.007069,
0.007114,
0.00696,
0.021457,
0.006111],
'first and second': [0.00665499999999999,
0.006148,
0.008511,
0.005904,
0.005982],
'last': [0.005403,
.005576,
.00568,
.005537,
.005331]},
800: {'first': [0.009515,
0.006787,
0.00573,
0.006183,

O O O O

13

0.006404],
'first and last': [0.007479,

0.006345,
0.007722,
0.007325,
0.009618],
'first and second': [0.007499,
0.007612,
0.007331,
0.007663,
0.006303],
'last': [0.006621,
0.006717,
0.008064,
0.006663,
0.006469]},
1600: {'first': [0.006767,
0.008588,
0.006473,
0.006884,
0.007529],
'first and last': [0.006403,
0.006559,
0.008803,
0.007665,
0.00828],
'first and second': [0.006299,
0.007696,
0.007924,
0.008282,
0.006877],
'last': [0.006611,
0.006213,
0.006902,
0.009258,

0.007416]}3},
8: {2: {'first': [0.010172,

0.010276,
0.009098,
0.011165,
0.008997],
'first and last': [0.014892,
0.012017,
0.012556,
0.01606,
0.019128],
'first and second': [0.012179,
0.01791,
0.012364,
0.015408,

14

0.015077,
'last': [0.014448,

0.009436,
0.010099,
0.009261,
0.0130471},
800: {'first': [0.010728,
0.011137,
0.009314,
0.00939,
0.010986] ,
'first and last': [0.015952,
0.012699,
0.016202,
0.01528,
0.015233],
'first and second': [0.087814,
0.093193,
0.093329,
0.090595,
0.087897],
'last': [0.01018,
0.009748,
0.009193,
0.009391,

0.009604]},
1600: {'first': [0.011818,
0.015312,
0.012704,
0.011397,
0.011389],
'first and last': [0.015404,
0.012765,
0.015671,
0.012296,
0.012886],
'first and second': [0.092846,
.158659,
.157882,
.126101,
.150604] ,

O O O O

'last': [0.011752,

0.009684,

0.009571,

0.011116,

0.0113771}}}},

'ra3.xlplus': {2: {1: {2: {'first': [0.009755,
0.010415,
0.005871,
0.008958,

15

16

0.005723],
'first and last': [0.009507,

0.00601,
0.006902,
0.005113,
0.005115],
'first and second': [0.00786500000000023,
0.00534,
0.005758,
0.005071,
0.005595] ,
'last': [0.005239,
0.004884,
0.005239,
0.005269,
0.0063721},
800: {'first': [0.005928,
0.005915,
0.005506,
0.005278,
0.006179],
'first and last': [0.006394,
0.006603,
0.00621,
0.006334,
0.007127],
'first and second': [0.005769,
0.005586,
0.006847,
0.008837,
0.005641]7,
'last': [0.004933,
0.005238,
0.007724,
0.005784,
0.005889]1},
1600: {'first': [0.006202,
0.005788,
0.005208,
0.005904,
0.006407],
'first and last': [0.005717,
0.006912,
0.007767,
0.008512,
0.007253],
'first and second': [0.006739,
0.006878,
0.005955,
0.006739,

8: {2: {'first': [O.

17

1600:

'last':

O O O O

'first and

'first and

'last': [O.

O O O O

800: {'first':

'first an

'first an

'last': [

{'first':

[0.00646,
0.006753,
0.005414,
0.00586,

0.007418],

0.005476]}},

009762,
.009675,
.010701,
.007362,
.007175],

last': [0.011825,
0.01177,
0.011457,
0.009661,
0.009611],

second': [0

O O O O

00701,

.006871,
.010002,
.008035,
.008293]},

[0.012611,
0.009181,
0.007319,
0.008433,
0.007569],

d last': [O.

0

0
0.
0

d second':

0.009171,
0.007369,
0.007532,
0.011004,
0.009196]},
[0.009756,
0.007568,
0.010311,
0.007383,

.01092,
.014204,
.013526,
.009901,
.009765],

013254,
.012883,
.011015,
012974,
.009578],
[0.0185186,
0.018681,
0.019176,
0.018859,
0.019516],

0.008999],
'first and last': [0.010471,

0.010031,
0.012248,
0.011519,
0.01256],
'first and second': [0.018623,
0.019316,
0.019296,
0.018557,
0.019013],
'last': [0.007297,
0.007603,
0.011624,
0.008758,

0.0076411}}}}},
'versions': {'dc2.large': {2: 'PostgreSQL 8.0.2 on i686-pc-linux-gnu, '
'compiled by GCC gcc (GCC) 3.4.2 20041017 (Red '
'Hat 3.4.2-6.fc3), Redshift 1.0.29551'},
'ds2.xlarge': {2: 'PostgreSQL 8.0.2 on i686-pc-linux-gnu, '
'compiled by GCC gcc (GCC) 3.4.2 20041017 (Red '
'Hat 3.4.2-6.fc3), Redshift 1.0.29551'},
'ra3.xlplus': {2: 'PostgreSQL 8.0.2 on i686-pc-linux-gnu, '
'compiled by GCC gcc (GCC) 3.4.2 20041017 (Red '
'Hat 3.4.2-6.fc3), Redshift 1.0.29551'}}}

18

	Introduction
	Test Method
	Results
	Performance Test
	dc2.large, 2 nodes, first column
	dc2.large, 2 nodes, last column
	dc2.large, 2 nodes, first and second column
	dc2.large, 2 nodes, first and last column
	ds2.xlarge, 2 nodes, first column
	ds2.xlarge, 2 nodes, last column
	ds2.xlarge, 2 nodes, first and second column
	ds2.xlarge, 2 nodes, first and last column
	ra3.xlplus, 2 nodes, first column
	ra3.xlplus, 2 nodes, last column
	ra3.xlplus, 2 nodes, first and second column
	ra3.xlplus, 2 nodes, first and last column

	Discussion
	Conclusions
	Unexpected Findings
	Further Questions
	Credits
	Revision History
	v1
	v2
	v3
	v4
	v5

	Appendix A : Raw Data Dump

