
Pseudo-Random Number Generation

Max Ganz II @ Redshift Research Project

5th March 2023

Abstract

Redshift provides two PRNGs, one on the leader node and one on the
worker nodes. The leader node PRNG is correctly implemented. The
worker node PRNG is fundamentally flawed. Each worker slice produces
a linear, minutely incrementing number sequence (the “non-PRNG num-
ber sequence”) which cycles between 0.0 and 1.0, where when a query is
issued, each slice consumes the current number from that sequence and
uses it as the seed for a PRNG, which in turn uses it to generate a random
number sequence for and only for that query. The first random number
emitted by a query on each slice is the number from the non-PRNG num-
ber sequence on that slice. The following numbers are from the PRNG.
Low-entropy non-PRNG number sequence numbers, occurring when the
numbers contain many zero bits, lead to correlation between the initial
numbers produced by a PRNG for a query, and also between the initial
values produced between queries.

Contents
Introduction 2

Redshift Internal Architecture 2

Test Method 5

Results 7
dc2.large, 2 nodes (1.0.30840) . 8

Five Queries, One Row Each, One Number per Row, Leader Node 8
One Query, Five Rows, One Number per Row, Leader Node . . . 8
One Query, One Row, Five Numbers per Row, Leader Node . . . 8
PRNG Seed/Number Sequence per-Session or Global, Leader Node 8
First Five Numbers per Worker Slice 8
First Five Numbers per Worker Slice (with extra query) 9
One Query, Five Rows, One Number per Row, Worker Slice 0 . . 9
Five Queries, One Row per Query, Five Numbers per Row,

Worker Slice 0 . 9
One Query, One Row, One Number per Slice, Worker Nodes . . . 9
PRNG Seed/Number Sequence per-Session or Global, Worker Node 9
Slice Hopping and PRNG Consumption 9

1

Discussion 10

Conclusions 18

Unexpected Findings 19

Revision History 20
v1 . 20
v2 . 20
v3 . 20
v4 . 20
v5 . 20

Appendix A : Raw Data Dump 21

Appendix B : The Curious Step-Plan 22

Appendix C : Dieharder Results 25
Core Code . 26
Python 3.7.3 . 27
Redshift Leader Node (dc2.large, 2 nodes, 1.0.30840) 29
Redshift Worker Slice 0 (dc2.large, 2 nodes, 1.0.30840) 32
Summary . 34

Introduction
This paper is an investigation into the pseudo-random number generator
(PRNG) in Redshift, and credit here must be given to another software
engineer.

I began to investigate this subject in early 2021, but was immediately directed
by a fellow Redshift admin to a post on the official Amazon Redshift Developer
Forums, made by Murat Tasan (LinkedIn), which describes major design flaws
in the PRNG.

The origin of the investigation in this paper is his findings, which I have investi-
gated, determined the causes, formalized with a script to provide reproducibility,
and then extended by investigating further aspects of behaviour in different sit-
uations.

In general, then, this white paper explores the behaviour of the pseudo-random
number generators (there’s more than one, as you will see) in Redshift.

Redshift Internal Architecture
This white paper intended to explore random number generation, then in doing
so ran into what I think is a change made something like a year ago in the internal
architecture of Redshift, and which I’ve been observing in various places since
then but have yet to actually investigate.

2

https://forums.aws.amazon.com/thread.jspa?messageID=757188#757188
https://www.linkedin.com/in/murman/

Note though this is based on my recollections of behaviour prior to this time, as I
have no earlier investigations into this matter, so I can’t compare what happens
now with a formal record of what used to happen - so I could be wrong.

Nevertheless, the crux of this change, as I understand it, must be described in
this white paper, and at this point, for without it the white paper will make no
sense at all - even the test methods cannot be explained - even though here in
this paper I am not providing proofs.

So, turning to the subject in hand : when it comes to Redshift clusters, it is
never possible to run older versions. You can only run what’s available now (and
maybe one previous release). So I can always exactly determine what Redshift
does now, but for anything in the past where I lack formal proofs, I’m relying
on memory.

I think I remember things were different - but having no formal records of this
behaviour, I can’t be certain, so there is a possibility here of error on my part.

So, having said that, what I think is this : that it used to be each slice held
a portion of the rows in each normal Redshift table, and that only the slice
holding the rows could directly access those rows. For other slices to access
those rows, the owning slice would need to read them, and then transmit them
over the network, as part of the actual work being performed by a query (a
broadcast or distribute step).

As such, if a block was stored on a slice and you accessed that block, it would
necessarily be that slice which read that block.

Well, to quote Mr. Dylan, “things have changed”.

Now, I’ve not actually sat down and investigated what’s going on, so what I
relate now are the behaviours I’ve noticed as I’ve been doing other work and
especially with the investigation work for this white paper.

The key change is that it looks now that every slice on a node can directly access
the rows of every other slice on that node.

As such, when a query is issued, say for example a query which uses rows only
held by one slice, it is no longer possible to know which slice that query will
execute upon; it could execute on any of the slices in that node.

If only one slice on a node holds blocks for a table, there seems to be a strong
preference for a query to execute on that slice. If all slices on a node hold blocks,
it seems query distribution is pretty evenly spread.

Most queries of course execute on all slices, and in that, the usual case, it won’t
matter (assuming that slices are wholly symmetric in performance), but here in
this white paper for example, with random number generation investigation, I
need to ensure queries are running on the same single slice, always. Before, I
could do this, by controlling which slice blocks went to and then issuing queries
which used blocks on a single slice only. Now I cannot - what I now do in
fact is loop over each query until it executes on the slice I want it to execute
on. As with certain other changes in recent years (auto-vacuum, system tables
becoming views and the underlying tables no longer being accessible, etc), this
obstructs investigation.

3

https://vimeo.com/119894077

I suspect this change relate to another change, which occurred between between
2019-09-27 and 2020-10-03 (I have partial dumps of the system tables’ DDL and
SQL on those dates). We can observe between these times a new column was
added to STV_SLICES, type, which is a char(1) where the value is either C or
D, which we reasonably can assume mean ‘compute’ and’ data’, respectively.

I’ve only ever been able to get compute slices to show up on ra3 type nodes,
and they are brought into existence by an elastic resize.

(Brief refresher on elastic resize : the number of slices remains the same, but the
number of nodes changes, and the slices are redistributed over the nodes. So if
you add nodes, you end up with more hardware, but less slices per node, and
so reduced chances for efficiency by exploiting parallelism. If you remove nodes,
you have less hardware, and so save money, but now have more slices on each
node, and if you do that too much, the overheads involved in each slice begin
to be unduly costly. Modus omnibus in rebus.)

Here’s STV_SLICES from a brand new two node ra3.xlplus;

node | slice | localslice | type
------+-------+------------+------

0 | 0 | 0 | D
0 | 1 | 1 | D
1 | 2 | 0 | D
1 | 3 | 1 | D

And this is what we see after an elastic re-size to four nodes.

node | slice | localslice | type
------+-------+------------+------

0 | 0 | 0 | D
0 | 4 | 1 | C
1 | 2 | 0 | D
1 | 5 | 1 | C
2 | 1 | 0 | D
2 | 6 | 1 | C
3 | 3 | 0 | D
3 | 7 | 1 | C

The number of nodes has doubled, the data slices have been distributed between
them, and the other slice on each node is a compute slice.

Compare this to the same re-size for a two node dc2.large;

node | slice | localslice | type
------+-------+------------+------

0 | 0 | 0 | D
0 | 1 | 1 | D
1 | 2 | 0 | D
1 | 3 | 1 | D

And after a re-size to four nodes;

node | slice | localslice | type
------+-------+------------+------

4

0 | 0 | 0 | D
1 | 2 | 0 | D
2 | 1 | 0 | D
3 | 3 | 0 | D

Here we see the number of slices remains the same.

This new behaviour is immediately interesting in one way, in that I think it
solves, for ra3 nodes, a drawback (as ever, undocumented) with elastic re-size,
which is that you get a maximum of ten Redshift Spectrum workers per slice,
so if you performed an elastic re-size, you’d be paying for more nodes but you
wouldn’t be getting more throughput with Redshift Spectrum, because the num-
ber of slices was fixed. Now we see elastic re-size actually giving more slices,
at least on ra3 - it doesn’t on the other node types, not as far as my brief
investigation into re-sizing has found.

Speculatively, I would guess the compute slices have no SSD storage of their
own. They’re on the same node, though, so it doesn’t matter now; they can
directly access to the blocks held by other slices.

One obvious question is if there are performance issues.

My gut feeling is that only one slice at a time can access the blocks held by a
slice. This is something in particular I will look into when I investigate all this
new behaviour.

So, finally coming back now to this white paper, where random number genera-
tion is investigated, this is why there are in the Python script used to generate
evidence loops around queries, which check to see the slice the query executed
upon, to ensure results are only from queries which executed on a given slice.

Test Method
There are basically two types of test in this white paper.

The first type of test produces only a few numbers from the PRNG, and presents
them in a table, along with an explanation of what they must mean.

The second type produces an image, a small grey-scale bitmap, 256 by 256 pixels
in size, by converting each random number to a grey-scale pixel; Redshift emits
random numbers between 0.0 and 1.0, where 0.0 becomes black and 1.0 becomes
white.

A reference image is generated using the Python 3.7.3 PRNG, which I under-
stand is a Mersenne Twister, which is about the best non-cryptographic PRNG
out there, and very nice it is too.

The use of an image is a rough and ready method to check if a PRNG is emitting
random numbers; if it is not, patterns can be seen in the bitmap. Any patterning
visible to the plain human eye means the PRNG is emitting garbage.

To properly test a random number generator, pseudo or real, a large battery
of statistical tests are performed on its output, and one utility for this is a
command line tool known as dieharder.

5

https://en.wikipedia.org/wiki/Mersenne_Twister

This is available on my Debian system from the Debian repository, but it’s
not necessarily available on other systems, and so although I have included in
Appendix C its results on the Python 3.7.3 PRNG, the leader-node PRNG and
a worker node slice PRNG (the leader node has a different PRNG to the worker
nodes), I have not used it generally, since the script which produces evidence
for each white paper is specifically intended to be used by readers, so they can
verify the results are true for their system, and to check in the future if the
results are still true or if Redshift has changed.

Turning directly now to the tests, note all tests on a worker node are run,
unless specifically indicated otherwise, on node 0 slice 0. All tests check that
their queries actually did run on that slice, and run them again (resetting the
seed, of course), if they did not.

All tests are usual are issued on a newly spun-up cluster. For my run of the
script, I used a two node dc2.large cluster.

The tests are;

1. Five queries are issued, which produce one row each, with one random
number per row, on the leader node.

2. One query is issued, which produces five rows, with one random number
per row, on the leader node.

3. One query is issued, which produces one row, with five random numbers,
on the leader node.

4. We now check if the PRNG seed/number sequence, on the leader node, is
per-session or across all sessions. This is done by opening two connections
to the cluster and setting the seed on both to 0, then issuing one query
on the first connection taking one row of three random numbers from the
leader node, and then the same query, but on the second connection.

If the three random numbers are the same for both queries, the seed must
be per-session.

5. For information purposes, this test generates the first five random numbers
from each worker slice.

6. We then repeat the previous test, but now with a superfluous query, which
does not generate random numbers, between every query.

7. One query is issued, which generates five rows, with one random number
per row, on worker slice 0.

8. Five queries are issued, generating one row each, with five random numbers
per row, on worker slice 0.

9. One query is issued, with one row, which has one random number per
slice, with the query generating one row on each slice.

10. We now check if the PRNG seed/number sequence, on the worker node, is
per-session or across all sessions. This is done by opening two connections
to the cluster and setting the seed on both to 0, then issuing one query on
the first connection taking one row of one random number from the leader
node, and then the same query, but on the second connection.

6

If the random numbers are the same for both queries, the seed must be
per-session.

11. This test generates a bitmap of the results from a single query, generating
all rows, where each row has a single random number, on the leader node.

12. This test generates a bitmap of the results from a single query, generating
all rows, where each row has a single random number, on worker slice 0.

13. This test generates a bitmap of the results from a 2^16 queries, generating
one row each, where each row has a single random number, on the leader
node.

14. This test generates a bitmap of the results from a 2^16 queries, generating
one row each, where each row has a single random number, on worker slice
0.

15. This test generates a bitmap of the results from a 2^16 queries, generating
one row each, where each row generates five random numbers, on worker
slice 0.

16. This test generates a bitmap of the results from a (2^16)5 queries, gen-
erating one row each, where each row generates five random numbers, on
worker slice 0; the bitmap is generated from the second* random number
from each query. This demonstrates cross-query correlation.

17. This test generates the first five random numbers from worker slice 0, and
then generates the same random numbers again except that this second
set is generated repeatedly until exactly one of the numbers, between the
second and second-to-last, slice hops. The two sets of results demonstrate
what happens to the number sequence when slice hopping occurs.

Results
The results are given here for ease of reference, but they are also presented, piece
by piece along with explanation, in the Discussion, and it is there you should
read about them to understand them.

See Appendix A for the Python pprint dump of the results dictionary.

Download random_number_generation.py, the script used to generate the evi-
dence for this white paper.

Usage : ./pseudo_random_number_generation.py one-shot

The script works in eu-central-1, creates a VPC, configures everything that
needs, runs the cluster specified in the test, executes the tests, and dumps the
results on screen, then cleans everything up.

The script, like all ARRP scripts, requires boto3 version 1.17.34 or later.

Note this script, where it generates images, makes a directory named images,
which it populates, and requires numpy to be installed; I have no idea which
version introduced the image generation functionality I’m using. I should think
anything non-archaic will be fine.

7

https://www.amazonredshiftresearchproject.org/white_papers/downloads/pseudo_random_number_generation.py

Total script execution time, including cluster bring-up and shut-down, was 4,792
seconds.

dc2.large, 2 nodes (1.0.30840)
Five Queries, One Row Each, One Number per Row, Leader Node

Query Number
1 0.840187716763467
2 0.394382926635444
3 0.783099223393947
4 0.798440033104271
5 0.911647357512265

One Query, Five Rows, One Number per Row, Leader Node

Row Number
1 0.840187716763467
2 0.394382926635444
3 0.783099223393947
4 0.798440033104271
5 0.911647357512265

One Query, One Row, Five Numbers per Row, Leader Node

Number #1 Number #2 Number #3 Number #4 Number #5
0.840188 0.394383 0.783099 0.798440 0.911647

PRNG Seed/Number Sequence per-Session or Global, Leader Node

Session Query random() #1 random() #2 random() #3
1 1 0.840187716763467 0.394382926635444 0.783099223393947
2 1 0.840187716763467 0.394382926635444 0.783099223393947

First Five Numbers per Worker Slice

Query Slice #0 Slice #1 Slice #2 Slice #3
1 0.0000000000000390.3669251442916380.7338502885832380.100775432874837
2 0.0000895813340950.3670147256256940.7339398699172930.100865014208892
3 0.0001791626681500.3671043069597490.7340294512513490.100954595542948
4 0.0002687440022060.3671938882938050.7341190325854040.101044176877004
5 0.0003583253362610.3672834696278610.7342086139194600.101133758211059

8

First Five Numbers per Worker Slice (with extra query)

Query Slice #0 Slice #1 Slice #2 Slice #3
1 0.0000000000000390.3669251442916380.7338502885832380.100775432874837
2 0.0001791626681500.3671043069597490.7340294512513490.100954595542948
3 0.0003583253362610.3672834696278610.7342086139194600.101133758211059
4 0.0005374880043720.3674626322959720.7343877765875710.101312920879170
5 0.0007166506724840.3676417949640830.7345669392556820.101492083547281

One Query, Five Rows, One Number per Row, Worker Slice 0

Row Number
1 0.000000000000039
2 0.000985394674650
3 0.041631001594613
4 0.176642642542916
5 0.364602248390607

Five Queries, One Row per Query, Five Numbers per Row, Worker
Slice 0

Number #1 Number #2 Number #3 Number #4 Number #5

0.0000000000000390.0009853946746500.0416310015946130.1766426425429160.364602248390607
0.0000895813340950.7319531771219200.8720866053171860.3755480612563420.794304826910761
0.0001791626681500.4629209595691890.7025422090397590.5744534799697690.224007405430914
0.0002687440022060.1938887420164580.5329978127623320.7733588986831950.653709983951067
0.0003583253362610.9248565244637280.3634534164849050.9722643173966220.083412562471221

One Query, One Row, One Number per Slice, Worker Nodes

Slice #0 Slice #1 Slice #2 Slice #3
0.000000000000039 0.366925144291638 0.733850288583238 0.100775432874837

PRNG Seed/Number Sequence per-Session or Global, Worker Node

Session Query random() #1
1 1 0.000000000000039
2 1 0.000089581334095

Slice Hopping and PRNG Consumption

Pinned to Slice 0

9

Query Slice random()
1 0 0.000000000000039
2 0 0.000089581334095
3 0 0.000179162668150
4 0 0.000268744002206
5 0 0.000358325336261

Unpinned to Slice 0

Query Slice random()
1 0 0.000000000000039
2 1 0.367014725625694
3 0 0.000179162668150
4 0 0.000268744002206
5 0 0.000358325336261

Discussion
We begin with the leader node. Remember that between every test, seed is set
back to zero.

First, we issue five queries, each producing one row, with one random number.

Query Number
1 0.840187716763467
2 0.394382926635444
3 0.783099223393947
4 0.798440033104271
5 0.911647357512265

These random numbers are then the first five numbers in the leader node PRNG
sequence.

Next, we issue one query, which produces five rows, each with one random
number.

Row Number
1 0.840187716763467
2 0.394382926635444
3 0.783099223393947
4 0.798440033104271
5 0.911647357512265

Here we see the same five numbers.

10

We then issue one query, which produces one row, but that row has five columns,
each a random number.

Value #1 Value #2 Value #3 Value #4 Value #5
0.840188 0.394383 0.783099 0.798440 0.911647

Here again we see the same five numbers.

Finally, we check to see if the PRNG seed/number sequence is per-session, or
global across all sessions.

To do this, we open two sessions, set the seed to 0 in both, and issue in both
sessions one query which produces one row of three random numbers.

Session # Query # random() #1 random() #2 random() #3
1 1 0.840187716763467 0.394382926635444 0.783099223393947
2 1 0.840187716763467 0.394382926635444 0.783099223393947

If the numbers produced from both queries are identical, then the PRNG
seed/number sequence must be on a per-session basis, and this is what found.

Python Leader

Here we see the reference bitmap from the Python 3.7.3 PRNG, and the bitmap
produced by the leader node PRNG with one query producing all rows, with
each row holding one random number. All the variations on generating random
numbers (many queries with one row each with each row holding one number,
many queries with many rows each with each row holding one number, etc) all
produce similar, properly random output.

What we see then is that the leader node PRNG has a single source of random
numbers, and every call to random() consumes one number from this sequence,
regardless of whether the calls are made over many queries, or many rows per
query, or many calls per row. We also see the seed/position in the number
sequence is held on a per-session basis.

11

One of the properties of a PRNG is reproducibility, which is to say, that the
sequence of numbers produced is always the same, so that once we have picked
a starting point in that sequence by setting the seed, we will always get the
same sequence of numbers. This is necessary for debugging.

The leader node provides reproducibility.

All in all what we see from the leader node is what we would expect from the
leader node, as it was formerly a single-node relational database, and when you
only have a single node to deal with, life is much simpler.

Now we turn to worker nodes.

To begin with, we issue for each slice, five queries, each producing one row, each
row holding one random number. This gives us the first five numbers in the
PRNG number sequence for each slice.

Query Slice #0 Slice #1 Slice #2 Slice #3
1 0.0000000000000390.3669251442916380.7338502885832380.100775432874837
2 0.0000895813340950.3670147256256940.7339398699172930.100865014208892
3 0.0001791626681500.3671043069597490.7340294512513490.100954595542948
4 0.0002687440022060.3671938882938050.7341190325854040.101044176877004
5 0.0003583253362610.3672834696278610.7342086139194600.101133758211059

What we observe is that each slice, for seed 0, starts at a different location
in the number sequence, and that each number being produced is in all cases
an increase of 0.000089581334055 on the previous number. When the number
exceeds 1.0, it loops back to 0.0.

This is not in fact a PRNG, being from here on referred to as the “non-PRNG
number sequence”, and so we must now investigate further to find how random
number are being generated.

First, if we repeat these queries, but this time issuing after each query a simple
select timeofday() from table 1 limit 1, we see that the numbers pro-
duced change.

Query Slice #0 Slice #1 Slice #2 Slice #3
1 0.0000000000000390.3669251442916380.7338502885832380.100775432874837
2 0.0001791626681500.3671043069597490.7340294512513490.100954595542948
3 0.0003583253362610.3672834696278610.7342086139194600.101133758211059
4 0.0005374880043720.3674626322959720.7343877765875710.101312920879170
5 0.0007166506724840.3676417949640830.7345669392556820.101492083547281

In fact, what’s happening is the extra query is causing every slice to jump
forward by one number in its number sequence, even though the extra query
does not generate any random numbers. The second set of results are the same
as the first, but with the lines from queries #2 and #4 removed (and the later
rows in the second set are not seen in the first set, as both sets only have five
rows).

12

We will come back to this a little later.

Next, if we issue a single query, to worker slice 0, which produces five rows,
each with one random number, we see the first number is unchanged, but the
succeeding numbers are different to those generated when five individual queries
are issued. We are now seeing something new, and which looks more like PRNG
output.

Row Number
1 0.000000000000039
2 0.000985394674650
3 0.041631001594613
4 0.176642642542916
5 0.364602248390607

This behaviour becomes clearer when we issue five queries, all to slice 0, with
seed set to 0 once, at the beginning of the set of five queries, with each query
producing one row, where each row has five random numbers.

Number #1 Number #2 Number #3 Number #4 Number #5

0.0000000000000390.0009853946746500.0416310015946130.1766426425429160.364602248390607
0.0000895813340950.7319531771219200.8720866053171860.3755480612563420.794304826910761
0.0001791626681500.4629209595691890.7025422090397590.5744534799697690.224007405430914
0.0002687440022060.1938887420164580.5329978127623320.7733588986831950.653709983951067
0.0003583253362610.9248565244637280.3634534164849050.9722643173966220.083412562471221

First, we see the five random numbers from the first query match the five random
numbers produced when we issue single queries which produces one row with one
random number each (not the table immediately above with the five columns,
but the table above that).

Second, if we look back at the table showing the first five random numbers pro-
duced on each slice, we see that the first number from each query (remembering
the queries here all run on slice 0) is reproducing the first five random numbers
from slice 0.

What seems then to be happening is that with the slice begins with the first
number in its non-PRNG number sequence (0.000000000000039), and then it
generates a sequence of random numbers (the next four random numbers in the
row), using a PRNG, derived from that initial number.

Then, when we come to the second query, the slice moves on to the second
number in its non-PRNG number sequence (0.000089581334095), and then, as
before, the slice generates numbers from a PRNG number sequence derived from
that initial number.

It seems then that every query - and if we think back to the earlier results where
we saw queries which were not generating random numbers causing progression
down the non-PRNG Number sequence - consumes the current non-PRNG num-
ber from the slice(s) it is running on and uses that at the seed for an actual

13

PRNG, to generate the random numbers for that query.

Slice #0 Slice #1 Slice #2 Slice #3
0.000000000000039 0.366925144291638 0.733850288583238 0.100775432874837

This is what we see here, with a query which generates one row, with one random
number per slice. Each slice emits the current number from its own non-PRNG
number sequence.

This leads to the immediate observation that any user issuing single queries
which produce a single random number is fully exposed to the minutely incre-
menting non-PRNG number sequence for whatever slice produces the row for
that query, because that number is always given as the first random number for
a query.

This is a fundamental design flaw; these are not random numbers and random()
should provide random numbers no matter how you call it.

Leader Worker

On the left, the bitmap produced by the leader node, when we generate pixels
by issuing a single query which produces a single row with a single random
number. On the right, worker slice 0.

Comparing here the leader node to the worker node is a little unfair, since
the leader node is a single computer rather than a cluster and so faces simpler
design challenges, but the worker node PRNG can perfectly well be designed so
it works correctly, so it’s not that unfair.

14

Figure 1: Unpinned Worker Slice 0

As an aside, figure 1 shows the bitmap produced when no steps are taken to
use only numbers generated by slice 0. The speckles mark numbers which were
produced on other slices, where their non-PRNG number sequence is different to
that on slice 0. Normally I think queries run evenly over slices, but where these
numbers are being produced by a select which is using a table which only has
blocks on slice 0 (e.g. select slice_num(), random() from table_1 limit
1), there seems to be a strong preference for execution on slice 0.

Designs where a PRNG is seeded from another PRNG are not unknown, but
the general advice is that the two PRNGs should use fundamentally different
mathematical approaches. In this case, though, there is one non-PRNG number
sequence and one PRNG, and this is not going to work correctly.

The problem is superficially ameliorated by each slice being at a different point
of the non-PRNG number sequence, but this is a billion miles from being an
actual, sound solution; in fact what it does mainly is obscure the problem, which
is not what you want.

The reason I think of for a design like this is performance. The idea is that each
query only needs to touch the master entropy state once, and then independently
produces its own random numbers; if all queries were using the same entropy
state to produce all their random numbers you could well end up with quite a
bottleneck.

Turning to the secondary PRNG, examination on worker slice 0 demonstrates
strong correlation between the initial few numbers created for each query, both
simply between themselves but also between the numbers generated by succes-
sive queries, where by this I mean to say the first number generated by a query
is correlated to the first number generated in the following queries, the second
number generated is correlated to the second number generated in the following
queries, and so on.

That’s not random; random numbers do not correlate to other random numbers,
at all, regardless of the query they’re in.

15

Python Single Query Cross Query

Here we see a reference bitmap, generated from the Python 3.7.3 PRNG, then a
bitmap produced by issuing many queries, which produce one row each, where
that row has five random numbers (constructing the bitmap, left-to-right, then
top-to-bottom, by concatenating each queries five random numbers), and finally,
a bitmap produced by issuing many queries, which produce on row each, where
that row has five random numbers, and this bitmap is composed of and only of
the second random number from each query (and so here to produce a bitmap
of the same size, five times as many queries had to be generated; note also the
first number from these queries is the non-PRNG number sequence, and so is
meaningless, which is why it’s not used - we’re here looking at the output from
the worker slice PRNG, not the non-PRNG number sequence).

Remember; it may not seem like much, but anything you can actually notice
with the plain human eye means output is profoundly broken.

I think the reason for both these problems is that in the test code, where I’m
issuing test queries one after the other, the numbers taken from the non-PRNG
number sequence are always very similar, and also I suspect being from slice 0,
which begins its non-PRNG number sequence almost at zero, have very few bits
set and so very little entropy, and it takes the PRNG some iterations to recover
from this handicap and get to the point where it’s producing decent random
numbers.

However, we must note the non-PRNG number sequences loop between 0.0 and
1.0, so all slices will be for extended and contiguous periods be emitting low-
entropy numbers.

Aside from this, we must remember that the first number for each query is
always non-random, since it is taken from the minutely incrementing non-PRNG
number sequence on each slice.

What we see then is that only safe way to use the worker node PRNG is to
issue queries which produce enough random numbers to get past the initial non-
random numbers. We see here the bitmap produced by worker slice 0 when a
single query produces all rows, with one number per row. The first number is
not random, as it is the non-PRNG number, then there’s a series of low quality
random numbers, and then the PRNG gets into its stride. The random numbers
produced when worker slice 0 is used in this way perform well in the dieharder
tests, the non-random initial numbers being overwhelmed by the many tens of
thousands of random numbers which follow.

16

Python Worker

Here we see the output from worker slice 0 when operated safely.

One thought then when using worker node PRNG is to issue prophylactic calls
to random(), to generate the initial non-random or poorly random numbers and
throw them away.

We can now turn back to two outstanding questions, whether the seed for worker
nodes is per-session or global, and the question of reproducibility.

As before, the test for per-session seed is to make two connections, set seed to
zero on both, and then issue a select into each session where the select generates
a random number, although with the worker slices we obtain only one random
number, rather than the three from the leader nodes (which I did just to show
some extra numbers to make things more obvious), because as we’ve seen, with
worker slices random numbers after the first come from the PRNG, which is
using the first number as its seed, and so they are purely dependent on the first
number and so having the first number is enough.

Session # Query # random() #1
1 1 0.000000000000039
2 1 0.000089581334095

This test demonstrates that the non-PRNG seed/number sequence position is
global, not per-session. This means every time any slice moves down the non-
PRNG number sequence, all slices do so, throwing away the numbers they skip
over.

Query Slice random()
1 0 0.000000000000039
2 0 0.000089581334095
3 0 0.000179162668150
4 0 0.000268744002206
5 0 0.000358325336261

17

Query Slice random()
1 0 0.000000000000039
2 1 0.367014725625694
3 0 0.000179162668150
4 0 0.000268744002206
5 0 0.000358325336261

This behaviour combines with slice hopping to produce a rather unexpected
outcome. Each slice has its own non-PRNG number sequence, and normally
queries which produce a single number will produce that sequence; we see this
in the first of the two tables above. However, when a query hops to another
slice, and runs there, that query will return a non-PRNG number sequence
number from that other slice, and the slice the query normally runs on will move
forward by one in its non-PRNG number sequence - permanently throwing away
a number, even though we have not consumed it. We see this in the second of
the two tables above.

Regarding reproducibility, it is obvious and inherent that Redshift worker nodes
do not offer reproducibility.

This is because where Redshift runs on a cluster, reproducibility is in principle
problematic. A query will execute, normally, on every slice in the cluster, and
there is no telling in which order rows will be produced by the slices; it might
be one slice is going slow, or another fast, depending on what other load is at
the time present on those slices.

As such, even if the worker node PRNG were producing the same sequence
of numbers across all slices, you would still see random numbers turning up in
different orders in your rows every time you run a query, because the rows would
naturally be generated in different orders every time the query runs.

Finally, note that Murat Tasan, the engineer who noticed the PRNG was be-
having very oddly, did so back in December 2016.

That was five years ago. Redshift came out in early 2013, three years before
then. My guess is the PRNG has been as it is found now since the beginning.

Conclusions
There are two PRNGs in Redshift; one on the leader node, one on the worker
nodes.

The leader node PRNG works correctly, always.

The worker node PRNG is fundamentally flawed.

The worker node PRNG design has each worker node slice producing a lin-
ear number series (the “non-PRNG number sequence”) where each number is
0.000089581334055 larger than the previous number, where each query, whether
it produces random numbers or not, consumes the current number from the non-
PRNG number sequence on each slice and uses this as the seed for a per-slice

18

PRNG, which then generates random numbers for that query from the number
sequence produced by that seed.

Each query then is generating its own, individual, per-slice sequence of PRNG
numbers, where the PRNG is initialized by the number taken from the non-
PRNG number sequence on each slice.

The first random number generated by a query, on each slice, is the number taken
from the non-PRNG number sequence on that slice. These numbers change
very slowly, incrementing each time a query is issued, and so this first number is
usually similar or very similar to the previously produced first number; any user
issuing consecutive queries which generate random numbers will receive a for
their first number on each slice direct copy of the non-PRNG number sequence
on each slice.

When queries which generate random numbers are issued in any kind of close
succession, the numbers taken from the non-PRNG number sequences are very
similar. Those sequences loop between 0.0 and 1.0, in tiny increments, and so
for considerable and contiguous periods produce numbers with low entropy -
many zero bits. When these two events combine, the PRNGs are seeded with
numbers which are very similar and low-entropy, and this presents difficulties to
the PRNG, which can take a certain number of iterations before it is generating
high quality random numbers, and during this time the initial numbers emerging
from the PRNG are low quality, such that these numbers are correlated both
with themselves (the numbers being generated by a single query) and also with
the numbers generated by successive queries.

It is advised then that when using random(), prophylactic calls are made, to
generate and then throw away initial low quality random numbers. At the very
least the first random number from each slice must be disposed of, since it is
from the non-PRNG number sequence.

The leader node maintains the PRNG seed and number sequence on a per-
session basis, and provide reproducibility, always generating the same PRNG
number sequence for any seed.

The worker nodes maintain the PRNG seed and number sequence globally, over
all sessions, although the position of each slice in the number sequence is differ-
ent. When one slice consumes a number from its non-PRNG number sequence,
all slices move down their sequence by one number.

Where the slices in the worker nodes depending on load produce rows at different
rates, it is inherently impossible for Redshift to provide reproducibility; even
if the PRNG always emitted, across all slices, the same sequence of numbers,
where the slices vary in how quickly they produce rows, the ordering of those
numbers would always differ between runs of a query.

Unexpected Findings
When you investigate Redshift, there are always unexpected findings.

1. I seemed to sometimes run into problems dropping tables which had re-
ceived large numbers (16,384) of sixteen row single inserts. There would

19

be no queries running, but issuing a drop on the table leads to the drop
just sitting there, nothing happening; I had to shut down the cluster. It
might be if I waited a long enough time, the drop would work, but I never
tried this.

2. If you issue a query in a procedure, Redshift will mess with the text you
issue, upper-casing the letters of the SQL command and removing any
trailing colon. If the query is executed via a cursor, i.e. open cursor for
..., a space is prepended to the query text, but the SQL command is now
not capitalized, and in some cases any trailing semi-colon is also removed.
Additionally, the text is messed with differently in STL_QUERY compared
to STL_QUERYTEXT.

3. This may well be a standard PL/pgSQL behaviour, but I’ve not seen it
documented anywhere and it’s new to me : opening a cursor with a query
does not cause query to execute. You have to call the first fetch to make
the query occur.

4. In the low-level system tables, such as STL_SCAN, the row count number
looks to be off-by-one some of the time. For example, if you scan five rows
from pg_class, STL_SCAN reports you scanned six.

Revision History
v1

• Initial release.

v2
• Re-arranged one or two sentences in the internal architecture material,

where an old sentence from previous writing had inadvertantly remained
in the text.

v3
• Fixed an error in the text where I instructed users to look at another table,

but told them the wrong table - I said look up two tables, should have
been one.

v4
• No content changes; path to image file(s) changed.

v5
• Changed to Redshift Research Project (AWS have a copyright on “Amazon

Redshift”).

20

Appendix A : Raw Data Dump
Note these results are completely unprocessed; they are a raw dump of the
results, so the original, wholly unprocessed data, is available.
{'proofs': {'dc2.large': {2: {'first_five_values_per_slice': {0: [3.90798504668055e-14,

8.95813340946461e-05,
0.000179162668150212,
0.000268744002205779,
0.000358325336261345],

1: [0.366925144291638,
0.367014725625694,
0.367104306959749,
0.367193888293805,
0.367283469627861],

2: [0.733850288583238,
0.733939869917293,
0.734029451251349,
0.734119032585404,
0.73420861391946],

3: [0.100775432874837,
0.100865014208892,
0.100954595542948,
0.101044176877004,
0.101133758211059]},

'first_five_values_per_slice_with_extra_query': {0: [3.90798504668055e-14,
0.000179162668150212,
0.000358325336261345,
0.000537488004372477,
0.00071665067248361],

1: [0.366925144291638,
0.367104306959749,
0.367283469627861,
0.367462632295972,
0.367641794964083],

2: [0.733850288583238,
0.734029451251349,
0.73420861391946,
0.734387776587571,
0.734566939255682],

3: [0.100775432874837,
0.100954595542948,
0.101133758211059,
0.10131292087917,
0.101492083547281]},

'five_queries__one_row__one_value_per_row__leader': [0.8401877167634666,
0.39438292663544416,
0.7830992233939469,
0.7984400331042707,
0.9116473575122654],

'five_queries__one_row_per_query__five_values_per_row__worker': [[0,
3.90798504668055e-14,
0.000985394674650308,
0.0416310015946131,
0.176642642542916,
0.364602248390607],
[0,
8.95813340946461e-05,
0.73195317712192,
0.872086605317186,
0.375548061256342,
0.794304826910761],
[0,
0.000179162668150212,
0.462920959569189,
0.702542209039759,
0.574453479969769,
0.224007405430914],
[0,
0.000268744002205779,
0.193888742016458,
0.532997812762332,
0.773358898683195,
0.653709983951067],
[0,
0.000358325336261345,
0.924856524463728,
0.363453416484905,
0.972264317396622,
0.0834125624712208]],

'many_queries__one_row_per_query__five_values_per_row__worker_node': [[3.90798504668055e-14,
0.000985394674650308,
0.0416310015946131,
0.176642642542916,
0.364602248390607],
[8.95813340946461e-05,
0.73195317712192,
0.872086605317186,
0.375548061256342,
0.794304826910761],
[0.000179162668150212,
0.462920959569189,
0.702542209039759,
0.574453479969769,
0.224007405430914],
[0.000268744002205779,

21

0.193888742016458,
0.532997812762332,
0.773358898683195,
0.653709983951067],
[0.000358325336261345,
0.924856524463728,
0.363453416484905,
0.972264317396622,
0.0834125624712208],
[0.000447906670316911,
0.655824306910997,
0.193909020207478,
0.171169736110048,
0.513115140991374],
[0.000537488004372477,
0.386792089358266,
0.024364623930051,
0.370075154823475,
0.942817719511527],
[0.000627069338428043,
0.117759871805536,
0.854820227652624,
0.568980573536901,
0.372520298031681],
[0.00071665067248361,
0.848727654252805,
0.685275831375197,
0.767885992250328,
0.802222876551834],
[0.000806232006539176,
0.579695436700074,
0.51573143509777,
0.966791410963754,
0.231925455071988]],

'one_query__five_rows__one_value_per_row__leader': [[0.8401877167634666],
[0.39438292663544416],
[0.7830992233939469],
[0.7984400331042707],
[0.9116473575122654]],

'one_query__five_rows__one_value_per_row__worker': [[0,
3.90798504668055e-14],
[0,
0.000985394674650308],
[0,
0.0416310015946131],
[0,
0.176642642542916],
[0,
0.364602248390607]],

'one_query__one_row__five_values_per_row__leader': [[0.8401877167634666,
0.39438292663544416,
0.7830992233939469,
0.7984400331042707,
0.9116473575122654]],

'one_query__one_row__one_value_per_slice__worker': [[0,
3.90798504668055e-14],
[1,
0.366925144291638],
[2,
0.733850288583238],
[3,
0.100775432874837]],

'pinned_slice_0': [(0, 3.90798504668055e-14),
(0, 8.95813340946461e-05),
(0, 0.000179162668150212),
(0, 0.000268744002205779),
(0, 0.000358325336261345)],

'prng_session_or_global_leader_1': [[0.8401877167634666,
0.39438292663544416,
0.7830992233939469]],

'prng_session_or_global_leader_2': [[0.8401877167634666,
0.39438292663544416,
0.7830992233939469]],

'prng_session_or_global_worker_1': 3.90798504668055e-14,
'prng_session_or_global_worker_2': 8.95813340946461e-05,
'unpinned_slice_0': [(0, 3.90798504668055e-14),

(1, 0.367014725625694),
(0, 0.000179162668150212),
(0, 0.000268744002205779),
(0,
0.000358325336261345)]}}},

'tests': {'dc2.large': {2: {}}},
'versions': {'dc2.large': {2: 'PostgreSQL 8.0.2 on i686-pc-linux-gnu, '

'compiled by GCC gcc (GCC) 3.4.2 20041017 (Red '
'Hat 3.4.2-6.fc3), Redshift 1.0.30840'}}}

Appendix B : The Curious Step-Plan
So, the existing system tables are impossible to use and as such I’ve been devel-
oping a set of replacement system tables for a couple of years.

22

One of the views produces what I term a “step-plan”. It’s a bit like an EXPLAIN,
except it tells the truth, but can only be used on a query which has completed.
It’s a list, in stream, segment and step order, per slice, of the steps which
occurred, and some information about each one. So it’s an actual, real listing
of what a query really did. You’ll see one shortly, in this appendix.

While I was working away on the investigation, one of the queries I issued is
this;

insert into table_1 (distribution_key, random_value)
select 0, random() from pg_class limit 5;

The idea is to get one leader-node query producing five rows, each with one
random number, which then is written to a worker-node table.

Well, turns out that doesn’t do what I thought it would, because any interaction
with a worker-node means the worker nodes do the work, and so in this case,
you end up with random numbers from the worker node PRNGs.

But the step-plan for this query is really remarkable, so much so I’ve made this
appendix for it.

So here’s what happens from the start up to the query;

dev=# create table table_1
dev-# (
dev(# distribution_key int2 not null encode raw distkey,
dev(# random_value float8 not null encode raw
dev(#)
dev-# diststyle key;
CREATE TABLE
dev=#
dev=# set seed = 0;
SET
dev=# insert into table_1 (distribution_key, random_value) select 0, random() from pg_class limit 5;
INSERT 0 5
dev=#
dev=# select random_value from table_1;

random_value

0.892646380714737
0.579246389527981
0.462220476811851
0.743841628806479
0.363176232529966
(5 rows)

Now for easy reference, here’s the first ten numbers from the leader node PRNG,
so we can see what we have up there in that table is from a worker node PRNG.

Value
0.840187716763467
0.394382926635444

23

Value
0.783099223393947
0.798440033104271
0.911647357512265
0.197551369201392
0.335222755558789
0.768229594454169
0.277774710673839
0.553969955537468

Now the step-plan.
dev=# select * from sf.queries_step_plan where qid = 520;
qid | stream | segment | step | node_id | slice_id | step_type | rows | bytes | start_time | duration | schematable_name | notes
-----+--------+---------+------+---------+----------+------------+------+-------+---------------------+----------+---------------------+---
520 | 0 | 0 | 0 | | 12813 | scan | 1835 | 0 | 2021-10-11 10:01:15 | 0.000718 | pg_catalog.pg_class |
520 | 0 | 0 | 1 | | 12813 | project | 1835 | | 2021-10-11 10:01:15 | 0.000718 | |
520 | 0 | 0 | 2 | | 12813 | distribute | 1835 | 0 | 2021-10-11 10:01:15 | 0.000718 | |
520 | 0 | 1 | 0 | 0 | 0 | scan | 6 | 96 | 2021-10-11 10:01:15 | 0.001774 | | scan data from network to temp table
520 | 0 | 1 | 0 | 0 | 1 | scan | 6 | 96 | 2021-10-11 10:01:15 | 0.001599 | | scan data from network to temp table
520 | 0 | 1 | 0 | 1 | 2 | scan | 6 | 96 | 2021-10-11 10:01:15 | 0.001671 | | scan data from network to temp table
520 | 0 | 1 | 0 | 1 | 3 | scan | 6 | 96 | 2021-10-11 10:01:15 | 0.001495 | | scan data from network to temp table
520 | 0 | 1 | 1 | 0 | 0 | limit | 6 | | 2021-10-11 10:01:15 | 0.001774 | |
520 | 0 | 1 | 1 | 0 | 1 | limit | 6 | | 2021-10-11 10:01:15 | 0.001599 | |
520 | 0 | 1 | 1 | 1 | 2 | limit | 6 | | 2021-10-11 10:01:15 | 0.001671 | |
520 | 0 | 1 | 1 | 1 | 3 | limit | 6 | | 2021-10-11 10:01:15 | 0.001495 | |
520 | 0 | 1 | 2 | 0 | 0 | return | 5 | 80 | 2021-10-11 10:01:15 | 0.001774 | |
520 | 0 | 1 | 2 | 0 | 1 | return | 5 | 80 | 2021-10-11 10:01:15 | 0.001599 | |
520 | 0 | 1 | 2 | 1 | 2 | return | 5 | 80 | 2021-10-11 10:01:15 | 0.001671 | |
520 | 0 | 1 | 2 | 1 | 3 | return | 5 | 80 | 2021-10-11 10:01:15 | 0.001495 | |
520 | 0 | 2 | 0 | | 12813 | scan | 6 | 96 | 2021-10-11 10:01:15 | 0.000171 | | scan data from network to temp table
520 | 0 | 2 | 1 | | 12813 | limit | 6 | | 2021-10-11 10:01:15 | 0.000171 | |
520 | 0 | 2 | 2 | | 12813 | project | 5 | | 2021-10-11 10:01:15 | 0.000171 | |
520 | 0 | 2 | 3 | | 12813 | project | 5 | | 2021-10-11 10:01:15 | 0.000171 | |
520 | 0 | 2 | 6 | | 12813 | distribute | 5 | 0 | 2021-10-11 10:01:15 | 0.000171 | |
520 | 0 | 3 | 0 | 0 | 0 | scan | 0 | 0 | 2021-10-11 10:01:15 | 0.004097 | | scan data from network to temp table
520 | 0 | 3 | 0 | 0 | 1 | scan | 0 | 0 | 2021-10-11 10:01:15 | 0.004096 | | scan data from network to temp table
520 | 0 | 3 | 0 | 1 | 2 | scan | 0 | 0 | 2021-10-11 10:01:15 | 0.00508 | | scan data from network to temp table
520 | 0 | 3 | 0 | 1 | 3 | scan | 5 | 80 | 2021-10-11 10:01:15 | 0.00519 | | scan data from network to temp table
520 | 0 | 3 | 1 | 0 | 0 | project | 0 | | 2021-10-11 10:01:15 | 0.004097 | |
520 | 0 | 3 | 1 | 0 | 1 | project | 0 | | 2021-10-11 10:01:15 | 0.004096 | |
520 | 0 | 3 | 1 | 1 | 2 | project | 0 | | 2021-10-11 10:01:15 | 0.00508 | |
520 | 0 | 3 | 1 | 1 | 3 | project | 5 | | 2021-10-11 10:01:15 | 0.00519 | |
520 | 0 | 3 | 2 | 0 | 0 | insert | 0 | | 2021-10-11 10:01:15 | 0.004097 | public.table_1 |
520 | 0 | 3 | 2 | 0 | 1 | insert | 0 | | 2021-10-11 10:01:15 | 0.004096 | public.table_1 |
520 | 0 | 3 | 2 | 1 | 2 | insert | 0 | | 2021-10-11 10:01:15 | 0.00508 | public.table_1 |
520 | 0 | 3 | 2 | 1 | 3 | insert | 5 | | 2021-10-11 10:01:15 | 0.00519 | public.table_1 |
520 | 0 | 3 | 3 | 0 | 0 | aggregate | 1 | 8 | 2021-10-11 10:01:15 | 0.004097 | | ungrouped, scalar aggregation in memory
520 | 0 | 3 | 3 | 0 | 1 | aggregate | 1 | 8 | 2021-10-11 10:01:15 | 0.004096 | | ungrouped, scalar aggregation in memory
520 | 0 | 3 | 3 | 1 | 2 | aggregate | 1 | 8 | 2021-10-11 10:01:15 | 0.00508 | | ungrouped, scalar aggregation in memory
520 | 0 | 3 | 3 | 1 | 3 | aggregate | 1 | 8 | 2021-10-11 10:01:15 | 0.00519 | | ungrouped, scalar aggregation in memory
520 | 1 | 4 | 0 | 0 | 0 | scan | 1 | 8 | 2021-10-11 10:01:15 | 8.4e-05 | | scan data from temp table
520 | 1 | 4 | 0 | 0 | 1 | scan | 1 | 8 | 2021-10-11 10:01:15 | 0.000108 | | scan data from temp table
520 | 1 | 4 | 0 | 1 | 2 | scan | 1 | 8 | 2021-10-11 10:01:15 | 8.3e-05 | | scan data from temp table
520 | 1 | 4 | 0 | 1 | 3 | scan | 1 | 8 | 2021-10-11 10:01:15 | 7.8e-05 | | scan data from temp table
520 | 1 | 4 | 1 | 0 | 0 | return | 1 | 8 | 2021-10-11 10:01:15 | 8.4e-05 | |
520 | 1 | 4 | 1 | 0 | 1 | return | 1 | 8 | 2021-10-11 10:01:15 | 0.000108 | |
520 | 1 | 4 | 1 | 1 | 2 | return | 1 | 8 | 2021-10-11 10:01:15 | 8.3e-05 | |
520 | 1 | 4 | 1 | 1 | 3 | return | 1 | 8 | 2021-10-11 10:01:15 | 7.8e-05 | |
520 | 1 | 5 | 0 | | 12813 | scan | 4 | 32 | 2021-10-11 10:01:15 | 0.001215 | | scan data from network to temp table
520 | 1 | 5 | 1 | | 12813 | aggregate | 1 | 16 | 2021-10-11 10:01:15 | 0.001215 | | ungrouped, scalar aggregation in memory
520 | 2 | 6 | 0 | | 12813 | scan | 1 | 16 | 2021-10-11 10:01:15 | 4.3e-05 | | scan data from temp table
520 | 2 | 6 | 1 | | 12813 | return | 0 | 0 | 2021-10-11 10:01:15 | 4.3e-05 | |
(48 rows)

Now, the first thing to node is the leader node has slice_id 12813 (at least in
this query - it used to be leader node slice_id was always 6411, but now it
seems (I’ve not investigated, so just offhand observations) to be a value starting
at 12811 and varying by query).

So what happens first is the leader node reads all 1835 rows from pg_class,
does not apply the limit clause, and distributes the rows to the worker nodes -
but the number of bytes read is 0, and that makes sense, because no columns
are read from pg_class.

All of the worker slices then scan six rows from the network (the distribution

24

from the leader node in the previous step), and these six rows are 96 bytes in
length.

This is fascinating.

First, why six? why not five? bug in the data, or is it really happening?

Second, we can see each row is 16 bytes in length, which is correct - one 8 byte
timestamp, one 8 byte float8 - so it looks like the leader node has actually pro-
duced the timeofday() and the random() number. If it has, then it’s done the
work, and its sent the rows out the worker slices - but we know from inspecting
the numbers in the table (as we know what numbers the leader node produces)
we have PRNG output from the worker slices, not the leader node! and this
implies the worker slice later overwrote the work done by the leader node!

The worker slices then apply the limit clause, and each returns 5 rows to the
leader node (limit has to work this way, because none of the slices can know
what the others returned, and all the others might have returned zero rows; but
it’s still a really useful thing to do because although the number of rows is still
the limit value for every slice, that’s still very likely to be a hell of a lot less
than the all the rows).

We now return to the leader node, which scans - apparently - six rows from the
network to a temp table.

I don’t get this at all. I’d expect it to read 20 - 5 from each worker slice. Maybe
it knows enough to apply the limit here? and the six is an off-by-one error?

We then see the actual limit step, getting us down to 5 rows, and then the
project steps are for organizing columns, so not important for us here, and then
the leader node again distributes the rows it has to the worker slices, this time
for the insert.

The SQL has been arranged so all rows are going to be held on slice 3, so we
see slices 0 to 2 have nothing, and slice 3 has all 5 rows and 80 bytes.

The insert then happens, and after that with the aggregate, scan and return,
and the leader node processing, we’re seeing the computation of how many rows
each worker slice inserted, with this information being returned to the user.

Appendix C : Dieharder Results
There is a utility, dieharder, which applies a large range of statistical tests to
PRNG output.

This is available on my Debian system from the Debian repository, but it’s
not necessarily available on other systems, and since the script which produces
evidence for each white paper is specifically intended to be used by readers, I
have not made it a dependency and so I have not included in the script the code
I used to generate data for it.

I have however included the core code here (everything except the code which
sets up a cluster and makes a connection).

25

I generated 10,000,000 32 bit values from the Python 3, leader node and worker
slice 0 PRNGs, all from seed 0.

This was of course with a single query producing all values, as this is the working
use case for Redshift.

To do with Redshift involves a slight element of uncertainty. The PRNG gen-
erates a value between 0.0 and 1.0, so it’s not possible to know how many bits
of random data are actually being generated by each call. I am then assuming
it’s at least 32 bits. If it’s less, then the dieharder report will be invalid (as it
is, given the PRNGs did well, it looks like it was okay).

Core Code
import array

print('Python PRNG data')

random.seed(0)
data = []
for loop in range(0, 10000000):
data.append(random.randint(0, 4294967296))

bf = array.array('L', data)
diskfile = open('prng_output_python.dat', 'wb')
bf.tofile(diskfile)
diskfile.close()

print('Leader node PRNG data')

issue_sql(connection_state, 'set seed = 0;')
sql = 'select random() from pg_class as p1, pg_class as p2, pg_class as p3 limit 10000000;'
rows, row_count = issue_sql(connection_state, sql)
data = []
for row in rows:
data.append(int(row[0] * float(4294967296)))

bf = array.array('L', data)
diskfile = open('prng_output_leader.dat', 'wb')
bf.tofile(diskfile)
diskfile.close()

print('Worker node PRNG data')

finished = False

while finished == False:
issue_sql(connection_state, 'set seed = 0;')
sql = 'select slice_num(), random() from table_1 limit 10000000;'
rows, row_count = issue_sql(connection_state, sql)
if rows[0][0] == 0:
data = []
for row in rows:

26

data.append(int(row[1] * float(4294967296)))
bf = array.array('L', data)
diskfile = open('prng_output_worker.dat', 'wb')
bf.tofile(diskfile)
diskfile.close()
finished = True

Python 3.7.3
#===#
dieharder version 3.31.1 Copyright 2003 Robert G. Brown
#===#

rng_name | filename |rands/second|
mt19937| prng_output_python.dat| 4.18e+07 |

#===#
test_name |ntup| tsamples |psamples| p-value |Assessment

#===#
diehard_birthdays| 0| 100| 100|0.91021316| PASSED

diehard_operm5| 0| 1000000| 100|0.62391805| PASSED
diehard_rank_32x32| 0| 40000| 100|0.86047849| PASSED
diehard_rank_6x8| 0| 100000| 100|0.98245643| PASSED

diehard_bitstream| 0| 2097152| 100|0.11901796| PASSED
diehard_opso| 0| 2097152| 100|0.61501742| PASSED
diehard_oqso| 0| 2097152| 100|0.92247033| PASSED
diehard_dna| 0| 2097152| 100|0.98797513| PASSED

diehard_count_1s_str| 0| 256000| 100|0.56215375| PASSED
diehard_count_1s_byt| 0| 256000| 100|0.83967377| PASSED
diehard_parking_lot| 0| 12000| 100|0.18735442| PASSED

diehard_2dsphere| 2| 8000| 100|0.83203791| PASSED
diehard_3dsphere| 3| 4000| 100|0.92342130| PASSED
diehard_squeeze| 0| 100000| 100|0.48740781| PASSED

diehard_sums| 0| 100| 100|0.76343976| PASSED
diehard_runs| 0| 100000| 100|0.54612314| PASSED
diehard_runs| 0| 100000| 100|0.81644432| PASSED
diehard_craps| 0| 200000| 100|0.48726638| PASSED
diehard_craps| 0| 200000| 100|0.87719203| PASSED

marsaglia_tsang_gcd| 0| 10000000| 100|0.10068775| PASSED
marsaglia_tsang_gcd| 0| 10000000| 100|0.68567671| PASSED

sts_monobit| 1| 100000| 100|0.38639892| PASSED
sts_runs| 2| 100000| 100|0.03197373| PASSED

sts_serial| 1| 100000| 100|0.47083513| PASSED
sts_serial| 2| 100000| 100|0.09539431| PASSED
sts_serial| 3| 100000| 100|0.91055561| PASSED
sts_serial| 3| 100000| 100|0.37027202| PASSED
sts_serial| 4| 100000| 100|0.85957342| PASSED
sts_serial| 4| 100000| 100|0.74293426| PASSED
sts_serial| 5| 100000| 100|0.26417245| PASSED
sts_serial| 5| 100000| 100|0.98590100| PASSED
sts_serial| 6| 100000| 100|0.50015357| PASSED
sts_serial| 6| 100000| 100|0.23763476| PASSED

27

sts_serial| 7| 100000| 100|0.27050504| PASSED
sts_serial| 7| 100000| 100|0.06887525| PASSED
sts_serial| 8| 100000| 100|0.37025966| PASSED
sts_serial| 8| 100000| 100|0.45902758| PASSED
sts_serial| 9| 100000| 100|0.36453740| PASSED
sts_serial| 9| 100000| 100|0.47091905| PASSED
sts_serial| 10| 100000| 100|0.13823639| PASSED
sts_serial| 10| 100000| 100|0.41825651| PASSED
sts_serial| 11| 100000| 100|0.72056127| PASSED
sts_serial| 11| 100000| 100|0.60510631| PASSED
sts_serial| 12| 100000| 100|0.16750470| PASSED
sts_serial| 12| 100000| 100|0.08681430| PASSED
sts_serial| 13| 100000| 100|0.62165433| PASSED
sts_serial| 13| 100000| 100|0.78142778| PASSED
sts_serial| 14| 100000| 100|0.13083346| PASSED
sts_serial| 14| 100000| 100|0.48723282| PASSED
sts_serial| 15| 100000| 100|0.69722467| PASSED
sts_serial| 15| 100000| 100|0.49267886| PASSED
sts_serial| 16| 100000| 100|0.92524386| PASSED
sts_serial| 16| 100000| 100|0.56477191| PASSED

rgb_bitdist| 1| 100000| 100|0.65634586| PASSED
rgb_bitdist| 2| 100000| 100|0.49532436| PASSED
rgb_bitdist| 3| 100000| 100|0.47939635| PASSED
rgb_bitdist| 4| 100000| 100|0.21084338| PASSED
rgb_bitdist| 5| 100000| 100|0.08389079| PASSED
rgb_bitdist| 6| 100000| 100|0.98785894| PASSED
rgb_bitdist| 7| 100000| 100|0.06729915| PASSED
rgb_bitdist| 8| 100000| 100|0.99625180| WEAK
rgb_bitdist| 9| 100000| 100|0.31705621| PASSED
rgb_bitdist| 10| 100000| 100|0.72738052| PASSED
rgb_bitdist| 11| 100000| 100|0.74987130| PASSED
rgb_bitdist| 12| 100000| 100|0.70277477| PASSED

rgb_minimum_distance| 2| 10000| 1000|0.20711437| PASSED
rgb_minimum_distance| 3| 10000| 1000|0.95847441| PASSED
rgb_minimum_distance| 4| 10000| 1000|0.73968906| PASSED
rgb_minimum_distance| 5| 10000| 1000|0.26091900| PASSED

rgb_permutations| 2| 100000| 100|0.26802939| PASSED
rgb_permutations| 3| 100000| 100|0.06202086| PASSED
rgb_permutations| 4| 100000| 100|0.48429432| PASSED
rgb_permutations| 5| 100000| 100|0.15929449| PASSED
rgb_lagged_sum| 0| 1000000| 100|0.99843521| WEAK
rgb_lagged_sum| 1| 1000000| 100|0.40708004| PASSED
rgb_lagged_sum| 2| 1000000| 100|0.52568156| PASSED
rgb_lagged_sum| 3| 1000000| 100|0.84796544| PASSED
rgb_lagged_sum| 4| 1000000| 100|0.13148988| PASSED
rgb_lagged_sum| 5| 1000000| 100|0.55538232| PASSED
rgb_lagged_sum| 6| 1000000| 100|0.55227698| PASSED
rgb_lagged_sum| 7| 1000000| 100|0.91975633| PASSED
rgb_lagged_sum| 8| 1000000| 100|0.84070991| PASSED
rgb_lagged_sum| 9| 1000000| 100|0.48917896| PASSED

28

rgb_lagged_sum| 10| 1000000| 100|0.22535359| PASSED
rgb_lagged_sum| 11| 1000000| 100|0.14795671| PASSED
rgb_lagged_sum| 12| 1000000| 100|0.96211921| PASSED
rgb_lagged_sum| 13| 1000000| 100|0.96644383| PASSED
rgb_lagged_sum| 14| 1000000| 100|0.48127863| PASSED
rgb_lagged_sum| 15| 1000000| 100|0.28678048| PASSED
rgb_lagged_sum| 16| 1000000| 100|0.94131471| PASSED
rgb_lagged_sum| 17| 1000000| 100|0.98791186| PASSED
rgb_lagged_sum| 18| 1000000| 100|0.52883737| PASSED
rgb_lagged_sum| 19| 1000000| 100|0.98808888| PASSED
rgb_lagged_sum| 20| 1000000| 100|0.74873563| PASSED
rgb_lagged_sum| 21| 1000000| 100|0.49714591| PASSED
rgb_lagged_sum| 22| 1000000| 100|0.46740536| PASSED
rgb_lagged_sum| 23| 1000000| 100|0.17966965| PASSED
rgb_lagged_sum| 24| 1000000| 100|0.95621705| PASSED
rgb_lagged_sum| 25| 1000000| 100|0.53383031| PASSED
rgb_lagged_sum| 26| 1000000| 100|0.07479719| PASSED
rgb_lagged_sum| 27| 1000000| 100|0.75256734| PASSED
rgb_lagged_sum| 28| 1000000| 100|0.63078770| PASSED
rgb_lagged_sum| 29| 1000000| 100|0.94394862| PASSED
rgb_lagged_sum| 30| 1000000| 100|0.85699054| PASSED
rgb_lagged_sum| 31| 1000000| 100|0.24538772| PASSED
rgb_lagged_sum| 32| 1000000| 100|0.55014932| PASSED
rgb_kstest_test| 0| 10000| 1000|0.08125982| PASSED
dab_bytedistrib| 0| 51200000| 1|0.21319946| PASSED

dab_dct| 256| 50000| 1|0.11947066| PASSED
Preparing to run test 207. ntuple = 0

dab_filltree| 32| 15000000| 1|0.53754123| PASSED
dab_filltree| 32| 15000000| 1|0.46607264| PASSED

Preparing to run test 208. ntuple = 0
dab_filltree2| 0| 5000000| 1|0.08515787| PASSED
dab_filltree2| 1| 5000000| 1|0.57370950| PASSED

Preparing to run test 209. ntuple = 0
dab_monobit2| 12| 65000000| 1|0.88376526| PASSED

Redshift Leader Node (dc2.large, 2 nodes, 1.0.30840)
#===#
dieharder version 3.31.1 Copyright 2003 Robert G. Brown
#===#

rng_name | filename |rands/second|
mt19937| prng_output_leader.dat| 8.64e+07 |

#===#
test_name |ntup| tsamples |psamples| p-value |Assessment

#===#
diehard_birthdays| 0| 100| 100|0.56283496| PASSED

diehard_operm5| 0| 1000000| 100|0.78028660| PASSED
diehard_rank_32x32| 0| 40000| 100|0.08944208| PASSED
diehard_rank_6x8| 0| 100000| 100|0.00439802| WEAK

diehard_bitstream| 0| 2097152| 100|0.13079436| PASSED

29

diehard_opso| 0| 2097152| 100|0.02301681| PASSED
diehard_oqso| 0| 2097152| 100|0.20625063| PASSED
diehard_dna| 0| 2097152| 100|0.70311401| PASSED

diehard_count_1s_str| 0| 256000| 100|0.88127953| PASSED
diehard_count_1s_byt| 0| 256000| 100|0.94238111| PASSED
diehard_parking_lot| 0| 12000| 100|0.77995133| PASSED

diehard_2dsphere| 2| 8000| 100|0.99544227| WEAK
diehard_3dsphere| 3| 4000| 100|0.97261935| PASSED
diehard_squeeze| 0| 100000| 100|0.24671327| PASSED

diehard_sums| 0| 100| 100|0.24126608| PASSED
diehard_runs| 0| 100000| 100|0.92369114| PASSED
diehard_runs| 0| 100000| 100|0.28035254| PASSED
diehard_craps| 0| 200000| 100|0.62306358| PASSED
diehard_craps| 0| 200000| 100|0.65024299| PASSED

marsaglia_tsang_gcd| 0| 10000000| 100|0.34694024| PASSED
marsaglia_tsang_gcd| 0| 10000000| 100|0.30239745| PASSED

sts_monobit| 1| 100000| 100|0.82007359| PASSED
sts_runs| 2| 100000| 100|0.84952560| PASSED

sts_serial| 1| 100000| 100|0.61632763| PASSED
sts_serial| 2| 100000| 100|0.25207783| PASSED
sts_serial| 3| 100000| 100|0.99652792| WEAK
sts_serial| 3| 100000| 100|0.34499257| PASSED
sts_serial| 4| 100000| 100|0.83698688| PASSED
sts_serial| 4| 100000| 100|0.54069181| PASSED
sts_serial| 5| 100000| 100|0.13307143| PASSED
sts_serial| 5| 100000| 100|0.00435777| WEAK
sts_serial| 6| 100000| 100|0.45527377| PASSED
sts_serial| 6| 100000| 100|0.01378227| PASSED
sts_serial| 7| 100000| 100|0.86954268| PASSED
sts_serial| 7| 100000| 100|0.92394266| PASSED
sts_serial| 8| 100000| 100|0.96815681| PASSED
sts_serial| 8| 100000| 100|0.73415977| PASSED
sts_serial| 9| 100000| 100|0.59889026| PASSED
sts_serial| 9| 100000| 100|0.83489705| PASSED
sts_serial| 10| 100000| 100|0.26949493| PASSED
sts_serial| 10| 100000| 100|0.04740705| PASSED
sts_serial| 11| 100000| 100|0.66772942| PASSED
sts_serial| 11| 100000| 100|0.84818719| PASSED
sts_serial| 12| 100000| 100|0.47073317| PASSED
sts_serial| 12| 100000| 100|0.21470601| PASSED
sts_serial| 13| 100000| 100|0.20460068| PASSED
sts_serial| 13| 100000| 100|0.47596139| PASSED
sts_serial| 14| 100000| 100|0.45279396| PASSED
sts_serial| 14| 100000| 100|0.63986527| PASSED
sts_serial| 15| 100000| 100|0.86743415| PASSED
sts_serial| 15| 100000| 100|0.99189999| PASSED
sts_serial| 16| 100000| 100|0.38905282| PASSED
sts_serial| 16| 100000| 100|0.92489209| PASSED

rgb_bitdist| 1| 100000| 100|0.16886848| PASSED
rgb_bitdist| 2| 100000| 100|0.61718315| PASSED

30

rgb_bitdist| 3| 100000| 100|0.95878298| PASSED
rgb_bitdist| 4| 100000| 100|0.15758441| PASSED
rgb_bitdist| 5| 100000| 100|0.68642455| PASSED
rgb_bitdist| 6| 100000| 100|0.98846650| PASSED
rgb_bitdist| 7| 100000| 100|0.77423360| PASSED
rgb_bitdist| 8| 100000| 100|0.07418954| PASSED
rgb_bitdist| 9| 100000| 100|0.27655315| PASSED
rgb_bitdist| 10| 100000| 100|0.36952839| PASSED
rgb_bitdist| 11| 100000| 100|0.90331503| PASSED
rgb_bitdist| 12| 100000| 100|0.76369571| PASSED

rgb_minimum_distance| 2| 10000| 1000|0.90089954| PASSED
rgb_minimum_distance| 3| 10000| 1000|0.71580309| PASSED
rgb_minimum_distance| 4| 10000| 1000|0.89880503| PASSED
rgb_minimum_distance| 5| 10000| 1000|0.38681646| PASSED

rgb_permutations| 2| 100000| 100|0.38359949| PASSED
rgb_permutations| 3| 100000| 100|0.99333476| PASSED
rgb_permutations| 4| 100000| 100|0.84905096| PASSED
rgb_permutations| 5| 100000| 100|0.38148715| PASSED
rgb_lagged_sum| 0| 1000000| 100|0.06409286| PASSED
rgb_lagged_sum| 1| 1000000| 100|0.80057461| PASSED
rgb_lagged_sum| 2| 1000000| 100|0.09333652| PASSED
rgb_lagged_sum| 3| 1000000| 100|0.91841324| PASSED
rgb_lagged_sum| 4| 1000000| 100|0.99895328| WEAK
rgb_lagged_sum| 5| 1000000| 100|0.49388161| PASSED
rgb_lagged_sum| 6| 1000000| 100|0.93171221| PASSED
rgb_lagged_sum| 7| 1000000| 100|0.37124762| PASSED
rgb_lagged_sum| 8| 1000000| 100|0.20428193| PASSED
rgb_lagged_sum| 9| 1000000| 100|0.57891575| PASSED
rgb_lagged_sum| 10| 1000000| 100|0.99323346| PASSED
rgb_lagged_sum| 11| 1000000| 100|0.17333651| PASSED
rgb_lagged_sum| 12| 1000000| 100|0.46028373| PASSED
rgb_lagged_sum| 13| 1000000| 100|0.27928022| PASSED
rgb_lagged_sum| 14| 1000000| 100|0.00015476| WEAK
rgb_lagged_sum| 15| 1000000| 100|0.16088120| PASSED
rgb_lagged_sum| 16| 1000000| 100|0.82912224| PASSED
rgb_lagged_sum| 17| 1000000| 100|0.76751496| PASSED
rgb_lagged_sum| 18| 1000000| 100|0.09242822| PASSED
rgb_lagged_sum| 19| 1000000| 100|0.81326560| PASSED
rgb_lagged_sum| 20| 1000000| 100|0.98568170| PASSED
rgb_lagged_sum| 21| 1000000| 100|0.86151519| PASSED
rgb_lagged_sum| 22| 1000000| 100|0.28338323| PASSED
rgb_lagged_sum| 23| 1000000| 100|0.41254617| PASSED
rgb_lagged_sum| 24| 1000000| 100|0.85047392| PASSED
rgb_lagged_sum| 25| 1000000| 100|0.76482908| PASSED
rgb_lagged_sum| 26| 1000000| 100|0.24530833| PASSED
rgb_lagged_sum| 27| 1000000| 100|0.09792350| PASSED
rgb_lagged_sum| 28| 1000000| 100|0.98778393| PASSED
rgb_lagged_sum| 29| 1000000| 100|0.10214293| PASSED
rgb_lagged_sum| 30| 1000000| 100|0.36574781| PASSED
rgb_lagged_sum| 31| 1000000| 100|0.71726766| PASSED

31

rgb_lagged_sum| 32| 1000000| 100|0.08671454| PASSED
rgb_kstest_test| 0| 10000| 1000|0.26474364| PASSED
dab_bytedistrib| 0| 51200000| 1|0.81035173| PASSED

dab_dct| 256| 50000| 1|0.90913523| PASSED
Preparing to run test 207. ntuple = 0

dab_filltree| 32| 15000000| 1|0.73063369| PASSED
dab_filltree| 32| 15000000| 1|0.42227581| PASSED

Preparing to run test 208. ntuple = 0
dab_filltree2| 0| 5000000| 1|0.08031804| PASSED
dab_filltree2| 1| 5000000| 1|0.46052720| PASSED

Preparing to run test 209. ntuple = 0
dab_monobit2| 12| 65000000| 1|0.32862265| PASSED

Redshift Worker Slice 0 (dc2.large, 2 nodes, 1.0.30840)
#===#
dieharder version 3.31.1 Copyright 2003 Robert G. Brown
#===#

rng_name | filename |rands/second|
mt19937| prng_output_worker.dat| 7.35e+07 |

#===#
test_name |ntup| tsamples |psamples| p-value |Assessment

#===#
diehard_birthdays| 0| 100| 100|0.98552888| PASSED

diehard_operm5| 0| 1000000| 100|0.23622484| PASSED
diehard_rank_32x32| 0| 40000| 100|0.41156151| PASSED
diehard_rank_6x8| 0| 100000| 100|0.26737892| PASSED

diehard_bitstream| 0| 2097152| 100|0.28538664| PASSED
diehard_opso| 0| 2097152| 100|0.84712054| PASSED
diehard_oqso| 0| 2097152| 100|0.87412791| PASSED
diehard_dna| 0| 2097152| 100|0.85570330| PASSED

diehard_count_1s_str| 0| 256000| 100|0.37831511| PASSED
diehard_count_1s_byt| 0| 256000| 100|0.70217420| PASSED
diehard_parking_lot| 0| 12000| 100|0.98448969| PASSED

diehard_2dsphere| 2| 8000| 100|0.83764169| PASSED
diehard_3dsphere| 3| 4000| 100|0.16493064| PASSED
diehard_squeeze| 0| 100000| 100|0.46299607| PASSED

diehard_sums| 0| 100| 100|0.02395836| PASSED
diehard_runs| 0| 100000| 100|0.72829432| PASSED
diehard_runs| 0| 100000| 100|0.90137611| PASSED
diehard_craps| 0| 200000| 100|0.02756788| PASSED
diehard_craps| 0| 200000| 100|0.76981361| PASSED

marsaglia_tsang_gcd| 0| 10000000| 100|0.92486587| PASSED
marsaglia_tsang_gcd| 0| 10000000| 100|0.82768046| PASSED

sts_monobit| 1| 100000| 100|0.64653275| PASSED
sts_runs| 2| 100000| 100|0.30846507| PASSED

sts_serial| 1| 100000| 100|0.88152740| PASSED
sts_serial| 2| 100000| 100|0.99979017| WEAK
sts_serial| 3| 100000| 100|0.58904454| PASSED
sts_serial| 3| 100000| 100|0.61237276| PASSED

32

sts_serial| 4| 100000| 100|0.10318355| PASSED
sts_serial| 4| 100000| 100|0.23471200| PASSED
sts_serial| 5| 100000| 100|0.14776957| PASSED
sts_serial| 5| 100000| 100|0.94426624| PASSED
sts_serial| 6| 100000| 100|0.43325597| PASSED
sts_serial| 6| 100000| 100|0.32473662| PASSED
sts_serial| 7| 100000| 100|0.46231799| PASSED
sts_serial| 7| 100000| 100|0.57226154| PASSED
sts_serial| 8| 100000| 100|0.75570832| PASSED
sts_serial| 8| 100000| 100|0.63532223| PASSED
sts_serial| 9| 100000| 100|0.41982537| PASSED
sts_serial| 9| 100000| 100|0.02958411| PASSED
sts_serial| 10| 100000| 100|0.55335691| PASSED
sts_serial| 10| 100000| 100|0.29778251| PASSED
sts_serial| 11| 100000| 100|0.89033787| PASSED
sts_serial| 11| 100000| 100|0.69445886| PASSED
sts_serial| 12| 100000| 100|0.70028280| PASSED
sts_serial| 12| 100000| 100|0.37050033| PASSED
sts_serial| 13| 100000| 100|0.82209080| PASSED
sts_serial| 13| 100000| 100|0.19545550| PASSED
sts_serial| 14| 100000| 100|0.25804521| PASSED
sts_serial| 14| 100000| 100|0.80358025| PASSED
sts_serial| 15| 100000| 100|0.89065155| PASSED
sts_serial| 15| 100000| 100|0.98312073| PASSED
sts_serial| 16| 100000| 100|0.27731748| PASSED
sts_serial| 16| 100000| 100|0.51880516| PASSED

rgb_bitdist| 1| 100000| 100|0.20214026| PASSED
rgb_bitdist| 2| 100000| 100|0.17699662| PASSED
rgb_bitdist| 3| 100000| 100|0.69509415| PASSED
rgb_bitdist| 4| 100000| 100|0.65004993| PASSED
rgb_bitdist| 5| 100000| 100|0.99160017| PASSED
rgb_bitdist| 6| 100000| 100|0.81048325| PASSED
rgb_bitdist| 7| 100000| 100|0.97492388| PASSED
rgb_bitdist| 8| 100000| 100|0.58948307| PASSED
rgb_bitdist| 9| 100000| 100|0.46751274| PASSED
rgb_bitdist| 10| 100000| 100|0.89638556| PASSED
rgb_bitdist| 11| 100000| 100|0.52860331| PASSED
rgb_bitdist| 12| 100000| 100|0.03558371| PASSED

rgb_minimum_distance| 2| 10000| 1000|0.37767141| PASSED
rgb_minimum_distance| 3| 10000| 1000|0.16219517| PASSED
rgb_minimum_distance| 4| 10000| 1000|0.88737620| PASSED
rgb_minimum_distance| 5| 10000| 1000|0.04465040| PASSED

rgb_permutations| 2| 100000| 100|0.99236354| PASSED
rgb_permutations| 3| 100000| 100|0.52719628| PASSED
rgb_permutations| 4| 100000| 100|0.76115210| PASSED
rgb_permutations| 5| 100000| 100|0.73836345| PASSED
rgb_lagged_sum| 0| 1000000| 100|0.29463994| PASSED
rgb_lagged_sum| 1| 1000000| 100|0.10403868| PASSED
rgb_lagged_sum| 2| 1000000| 100|0.79554102| PASSED
rgb_lagged_sum| 3| 1000000| 100|0.99019672| PASSED

33

rgb_lagged_sum| 4| 1000000| 100|0.87160049| PASSED
rgb_lagged_sum| 5| 1000000| 100|0.63526097| PASSED
rgb_lagged_sum| 6| 1000000| 100|0.78164429| PASSED
rgb_lagged_sum| 7| 1000000| 100|0.01414177| PASSED
rgb_lagged_sum| 8| 1000000| 100|0.91120273| PASSED
rgb_lagged_sum| 9| 1000000| 100|0.56019077| PASSED
rgb_lagged_sum| 10| 1000000| 100|0.88819428| PASSED
rgb_lagged_sum| 11| 1000000| 100|0.13060075| PASSED
rgb_lagged_sum| 12| 1000000| 100|0.28264461| PASSED
rgb_lagged_sum| 13| 1000000| 100|0.44541582| PASSED
rgb_lagged_sum| 14| 1000000| 100|0.29494481| PASSED
rgb_lagged_sum| 15| 1000000| 100|0.33588815| PASSED
rgb_lagged_sum| 16| 1000000| 100|0.55206878| PASSED
rgb_lagged_sum| 17| 1000000| 100|0.75623644| PASSED
rgb_lagged_sum| 18| 1000000| 100|0.80892139| PASSED
rgb_lagged_sum| 19| 1000000| 100|0.98600606| PASSED
rgb_lagged_sum| 20| 1000000| 100|0.32999864| PASSED
rgb_lagged_sum| 21| 1000000| 100|0.60481492| PASSED
rgb_lagged_sum| 22| 1000000| 100|0.91392204| PASSED
rgb_lagged_sum| 23| 1000000| 100|0.93116828| PASSED
rgb_lagged_sum| 24| 1000000| 100|0.09761773| PASSED
rgb_lagged_sum| 25| 1000000| 100|0.94670973| PASSED
rgb_lagged_sum| 26| 1000000| 100|0.14857654| PASSED
rgb_lagged_sum| 27| 1000000| 100|0.17125207| PASSED
rgb_lagged_sum| 28| 1000000| 100|0.44112337| PASSED
rgb_lagged_sum| 29| 1000000| 100|0.37278694| PASSED
rgb_lagged_sum| 30| 1000000| 100|0.02877012| PASSED
rgb_lagged_sum| 31| 1000000| 100|0.56022772| PASSED
rgb_lagged_sum| 32| 1000000| 100|0.20013696| PASSED
rgb_kstest_test| 0| 10000| 1000|0.42363767| PASSED
dab_bytedistrib| 0| 51200000| 1|0.32558216| PASSED

dab_dct| 256| 50000| 1|0.40829491| PASSED
Preparing to run test 207. ntuple = 0

dab_filltree| 32| 15000000| 1|0.15439468| PASSED
dab_filltree| 32| 15000000| 1|0.97294404| PASSED

Preparing to run test 208. ntuple = 0
dab_filltree2| 0| 5000000| 1|0.65211516| PASSED
dab_filltree2| 1| 5000000| 1|0.00399712| WEAK

Preparing to run test 209. ntuple = 0
dab_monobit2| 12| 65000000| 1|0.49219072| PASSED

Summary
Python was weak for the following tests;

rgb_bitdist| 8| 100000| 100|0.99625180| WEAK
rgb_lagged_sum| 0| 1000000| 100|0.99843521| WEAK

The leader node was weak for the following tests;

diehard_rank_6x8| 0| 100000| 100|0.00439802| WEAK

34

diehard_2dsphere| 2| 8000| 100|0.99544227| WEAK
sts_serial| 3| 100000| 100|0.99652792| WEAK
sts_serial| 5| 100000| 100|0.00435777| WEAK

rgb_lagged_sum| 4| 1000000| 100|0.99895328| WEAK
rgb_lagged_sum| 14| 1000000| 100|0.00015476| WEAK

Worker slice 0 was weak for the following tests;

sts_serial| 2| 100000| 100|0.99979017| WEAK
dab_filltree2| 1| 5000000| 1|0.00399712| WEAK

35

	Introduction
	Redshift Internal Architecture
	Test Method
	Results
	dc2.large, 2 nodes (1.0.30840)
	Five Queries, One Row Each, One Number per Row, Leader Node
	One Query, Five Rows, One Number per Row, Leader Node
	One Query, One Row, Five Numbers per Row, Leader Node
	PRNG Seed/Number Sequence per-Session or Global, Leader Node
	First Five Numbers per Worker Slice
	First Five Numbers per Worker Slice (with extra query)
	One Query, Five Rows, One Number per Row, Worker Slice 0
	Five Queries, One Row per Query, Five Numbers per Row, Worker Slice 0
	One Query, One Row, One Number per Slice, Worker Nodes
	PRNG Seed/Number Sequence per-Session or Global, Worker Node
	Slice Hopping and PRNG Consumption

	Discussion
	Conclusions
	Unexpected Findings
	Revision History
	v1
	v2
	v3
	v4
	v5

	Appendix A : Raw Data Dump
	Appendix B : The Curious Step-Plan
	Appendix C : Dieharder Results
	Core Code
	Python 3.7.3
	Redshift Leader Node (dc2.large, 2 nodes, 1.0.30840)
	Redshift Worker Slice 0 (dc2.large, 2 nodes, 1.0.30840)
	Summary

