
Users, Groups, Roles and Privileges

Max Ganz II @ Redshift Research Project

5th March 2023

Abstract

In Postgres, roles replaced users and groups (both become roles). Roles
in Redshift do not replace users or groups, but exist alongside them, as a
third, separate, first-class type. Roles, like groups, can be granted privi-
leges, but roles, unlike groups, can be granted to roles. Granting a role is
in effect the same as adding a user to a group. Along with roles come a
new set of Redshift-specific privileges, which can be granted to and only
to roles (roles can also be granted the existing Postgres-style privileges).
These new privileges are unlike the existing privileges (which are per-user,
per-object) as they are global; they apply to everything, everywhere, al-
ways, in all databases. They are essentially fragments of the super user.
Finally, note the documentation for roles is particularly egregious, and
there are a few of the new privileges which are properly tantamount to
granting super user, as they allow a user to elevate themselves to super
user.

Contents
Introduction 2

The Privileges Mechanism 2

Users 3

Groups 4

The Group-like Object Public 5

Roles 6

Postgres Privileges 11
Database . 11
Function . 11
Language . 11
Procedure . 11
Schema . 12
Table . 12
View . 13

Redshift Privileges 13

1

Default Privileges 19

Conclusions 21

Credits 22

Revision History 22
v1 . 22
v2 . 22
v3 . 22
v4 . 22

Introduction
This white paper assumes you are a passably experienced Redshift admin or
user, and so you know what users are, what groups are, and what privileges are.

The Privileges Mechanism
There are a number of different types of object in Redshift (and Postgres) -
databases, schemas, tables, functions, and so on.

Each type of object by being different in its nature has a particular set of privi-
leges associated with it; for example, you can create temp tables in a database,
but not in a function, so the privilege to create temp tables exists for databases
but not for functions.

Privileges can be granted to users, groups and roles, but groups and roles are (as
will be described) simply mechanisms to help organize the granting of privileges
to users; groups and roles are entirely passive, for it is only users who actually
perform actions, and so it is only users who are permitted or denied their actions
according to the privileges they hold.

The privilege mechanism is however in one particular situation completely by-
passed.

There is in Redshift (and Postgres) the concept of ownership for objects. Each
object has one and only one owner, which is a user (groups and roles cannot own
objects). When a user creates an object, that user is automatically the owner
of that object, and the owner of an object can do anything they like with that
object, always, because by being the owner, they in fact completely bypass the
privileges mechanism.

(Objects can have their ownership changed, but they begin owned by the user
who created them.)

The owner of an object can revoke from themselves every single privilege that
exists upon an object, and still then be able to perform every possible action
with that object.

2

Users
In Redshift (and Postgres), users are a cluster level concept, not a database
level concept; you do not get a new set of users per database. There is and only
is one set of users, no matter how many databases you have.

Users, under the hood, are uniquely identified by their user ID, which is an int4.
This increments when a new user is made, and since you’d need two billion users
to overflow, you’re likely to have a unique ID per user :-)

From the point of view of a human using Redshift, users are uniquely identified
by a name, an arbitrary string, which is up to 127 bytes of UTF-8. All users
must at any given time have a unique name, but names which were used but
have since been deleted, can be re-used.

Note however there are some places in the system tables where users are referred
to by name only - their user ID is not provided - and in fact it’s not always the
full user name which is given. This, when it happens, it is a blunder, because
it is not possible then to guarantee you can uniquely identify the user. So, for
example, stv_sessions indicates the user by the first 50 bytes only of the user
name. To my knowledge, 50 bytes is the longest safe user name.

(This issues crops up with particular strength and pervasiveness for database
names; to my knowledge the longest safe database name is only 32 bytes, rather
than the 127 it should be).

When you come to delete a user, Redshift (like Postgres) will not allow the
user to be deleted unless that user is utterly bare of everything - owns no object,
holds no privileges, etc. For the user to be deleted there can be no traces of that
user in the database at all and the drop user command performs absolutely
none of this work - it’s all down to you. Ridding the database completely of
a user, prior to dropping the user, is how Redshift/Postgres ensures there’s no
confusion whereby something, somewhere, still references the deleted user’s user
ID.

It’s also a moderate to large pain in the neck, when you come to delete a user,
you need to go through the system table for every type of object (schemas,
tables, functions, etc) and look to see if anything in there is owned by that user,
and you need to enumerate all their privileges - something which until very
recently Redshift could not do, which in fact made the situation problematic;
you needed to drop a user, but the user holds privileges, but you can’t find out
what those privileges are.

As such, what I often saw happening is that users are not deleted, but rather
have their account modified so they can no longer log in (and their password
changed for good measure).

There are three types of user; normal users, super users, and the root user, which
has the name rdsdb, the root user being owned and operated by AWS.

The root user is God, and can do anything - you might be thinking the super
users can do anything, but this is in fact not the case; superusers are minor
deities only. All of the built-in system objects, so the system tables, all the
functions Redshift comes with, and also a lot of the background queries Redshift

3

constantly runs, all are owned and issued by rdsdb, and so you cannot touch
them.

A lot of the system tables are like this - access is only permitted through views,
which control and constrain what you can see. This is a problem in some cases
- for example, it’s not possible to tell if a table has the auto sort-type except
by going through svv_table_info, which is a big, costly view (9.5kb of text),
and that view, last I looked, showed information only for tables which had one
or more rows; it did not show information for empty tables.

Super users are normal users in every respect except one; they always completely
bypass the privileges mechanism. Super users can perform any operation, on
anything, always - except for objects owned by rdsdb.

Normal users are the plebs working the fields. Normal users are limited in their
operations by the privileges mechanism, except for objects they themselves own.
On objects they own, normal users are the same as superusers; they can perform
any operation, always.

Groups
In Redshift (and Postgres), groups are a cluster level concept, not a database
level concept; you do not get a new set of groups per database. There is and
only is one set of groups, no matter how many databases you have.

Groups, under the hood, are uniquely identified by their group ID, which is an
int4. This increments when a new group is made, and since you’d need two
billion users to overflow, you’re likely to have a unique ID per group.

From the point of view of a human using Redshift, groups are uniquely identified
by a name, an arbitrary string, which is up to 127 bytes of UTF-8, and all groups
must at any given time have a unique name, but names which were used but
have since been deleted, can be re-used.

Groups are a pretty superficial concept in Redshift (and Postgres). The sole
purpose of groups is to make arranging and organizing privileges easier.

Groups can be granted privileges, and users can belong to groups, and a user
receives the privileges of a group if that user is a member of that group (which
can lead to a user can receiving the same privilege on the same object more
than once, which does no harm).

The only place in the system tables that you ever see groups, either by their ID
or name, is in the system table pg_group, which lists groups and their members,
and in the ACL columns, which are found in the system tables which describe
objects to which privileges apply - such as tables, functions, databases, etc -
and describe for each object which privileges are granted to who (and here the
“who” can be a group name).

The pg_group system table has one row per group, and in that row uses an
array to record the set of users in that group. Arrays are leader node only and
so this table - if you use the membership column - is leader node only. As it is,

4

this table has only three columns; the group ID, group name, and membership
array, so it’s hard not to use the membership array.

Groups cannot own objects; only users own objects.

Groups cannot be members of groups; only users can be a member of a group.

Now, in the usual case, in real world systems, you find many users need the same
set of privileges - maybe there are many BI developers, or a number of cluster
admin, or what-have-you; there are distinct sets of users which are identical in
the privileges they need.

Standard best practise is to never grant privileges to users, as this ends up being
high maintenance and error prone (particularly so prior to the capability to see
the privileges granted to any given user or group), but instead to create one
group per distinct set of users, grant those groups the privileges needed by their
set of users, and add or remove users to and from groups, in accordance to the
work the users are doing.

In short, groups get privileges, users get groups. Users never get privileges.

The Group-like Object Public
Public is not a group.

If you look in pg_group, you will not find a group named public, and as such,
public has no set of members.

Every user is automatically, always and irrevocably a member of what I call the
group-like object public. You cannot remove a user from the group-like object
public.

You can grant privileges to public, and by doing so, you grant those privileges
to every user in the cluster.

When you examine the ACL columns, which are found in the system tables which
describe objects to which privileges apply - such as tables, functions, databases,
etc - and describe for each object which privileges are granted to who, here the
“who” can be the name public, and this is the and the only place this name is
found.

Now, Redshift (and Postgres) ship with a large number of functions, which are
part of SQL, two examples of which are as min() and max() (but there are
thousands more), the type conversion functions (which we normally use via the
:: operator), these days all of the PostGIS functionality Redshift implements,
and so on.

All of these functions are available for everyone to use by execute privileges
being granted to public.

I have heard of systems where the admin, I believe for security purposes, want
to eliminate public. You cannot do this - it is not a group, but an inherent part
of Redshift/Postgres - the nearest you can get is to revoke all privileges from
public, which makes the automatic membership of public wholly without effect.

5

Actually doing this is problematic.

Firstly, until recently, there has been no viable method by which to enumer-
ate the privileges granted to public. If you can’t know what’s been granted,
you can’t know what to remove, or check that all privileges have in fact been
removed.

Secondly, if you do this, and revoke all privileges granted to public, you will
then need to grant the thousands of privileges to built-in functions to a group
of your own, to which you add users, so they can actually write SQL, because
otherwise users will not be able to call any of the thousands of functions which
are built in to SQL.

One final note.

When any user creates a function or a procedure (internally, Redshift/Postgres
pretty much thinks these are the same thing - there is only one system table,
pg_proc, for both), the execute privilege on that function or procedure is
automatically granted to public.

You can’t stop this, so if you are trying to keep public stripped of grants, you’d
also need to remove these automatically granted privileges.

Roles
Roles in Redshift are not the same as roles in Postgres.

In Postgres, it used to be (up to version 8.1) there were users and groups, and
these were separate, first-class types in the database. Users could belong to
groups, and both users and groups could hold privileges. A user held their own
privileges, plus those of any group they were a member of. Groups could not
be members of groups.

After Postgres 8.1, there were only roles. A user is really a role; a group is really
a role. The only property that makes a user special is that it’s a role which is
allowed to log into the server. So now it’s roles, all the way down - a role can
belong to a role, a role can hold privileges, and a role holds the privileges of any
roles it belongs to. All the existing operations on users and groups, although
they are for compatibility still supported, actually now perform operations on
groups. ‘

Lovely - pure, simple, utterly flexible, easy to reason about.

Now we come to Redshift, and to my eye, what we see here is what we often
see, which is an implementation constrained by a large, legacy code base : in
other words, something bolted on the side.

In Redshift, we still have users and groups, and they remain separate, first-
class types in the database, but now we have roles as well. Users are not roles,
groups are not roles, the Postgres tables for roles have not turned up in the
system tables; there is no pg_roles. There is now a pg_role, but it’s different
to the Postgres table, and there are a couple of extra, non-Postgres tables, to
go along with it.

6

None of these new system tables are user accessible, which is great for AWS
and their culture of secrecy, but bad for users, because it means we’ve stuck
with whatever system tables (views, really) the devs put on top of these tables,
and the devs are not good at system tables - and indeed, as we will see, they’ve
messed this up in a couple of ways.

Roles in Redshift are a collection of privileges, just like a group, but roles can be
granted to roles (unlike groups) and there are a set of new privileges, Redshift-
specific, which can only be granted to roles - not to users, not to groups.

What this means, in principle if potentially not in practise, is that roles have
superseded groups; everything you do with groups you can do with roles, and
roles give you something new. Groups are now obsolete.

Rather than managing privileges by creating groups and granting privileges
to groups, and then adding or removing users from groups, we now manage
privilege by creating roles and granting privileges to roles, and then granting or
revoking roles from users.

What we get that’s new is that we can build roles up out of sub-roles (by granting
roles to roles), and we get to issue the new Redshift-specific privileges, because
they can only be granted to roles. We can still issue all existing Postgres-style
privileges to roles, so we lose nothing.

What’s holding me back from this is basically the question of whether or not
I trust the implementation to be correct. I’m pretty confident groups, users
and Postgres-style privileges work. I’m not confident about anything new from
Redshift, because I’ve repeatedly seen over many years that testing is minimal
or seemingly non-existent and this - access control which can then involve PII
and legal obligations - can be highly sensitive. This is not a case of say access
to tables in Postgres being unreliable or having odd flaws; this is a case of PII
leaking and the company being legally liable. A higher bar must be met.

There are one or two other issues.

The implementation of roles is not Postgres-compliant or backwards compatible
(note here the Postgres implementation of roles is backwards compatible, and
so existing Postgres tooling continued to work when roles were introduced) and
so existing tooling, either native or from Postgres, which uses the ACL columns
to understand group privileges, will have no knowledge of roles at all.

Regarding the use of sub-roles, I could be completely wrong, but I can’t really
see much mileage in this. The number of groups/roles should be kept as small
as possible, to make them easy to reason about, and I think there usually is
only a need for a very few groups or roles - there usually are only a few distinct
sets of users which need different privileges - so I can’t see a need for this extra
organizational capability. Life I would say is usually simple enough that single-
level groups (or single-level roles) is enough.

The new Redshift privileges are much more consequential, however - but now
it’s surprise time, or maybe not such a surprise; the way they are arranged and
the way you use them is completely different to how the existing privileges are
arranged.

7

From now on, the previously existing privileges I’ll call Postgres privileges, or
Postgres-style privileges, and the new privileges I’ll call Redshift-style, or Red-
shift privileges.

Postgres privileges are arranged on the basis of a privilege per action, per object,
per user; user Frodo has privilege usage on schema ring.

Redshift privileges, by contrast, are arranged globally; when a user is granted a
Redshift privilege, that privilege is always active, on all objects, in all databases,
always - regardless of whatever Postgres privilege are or are not granted.

So here we see user Gandalf has privilege create table - simple as that; there’s
no object. Gandalf can now create tables, everywhere, always. It’s good to be
Gandalf!

In short, Redshift privileges are like fragments of being a super user. They give
the user the capability to perform some action, but everywhere, and always.

Now what’s really interesting here is what we can see of the implementation.

Here’s the text for the system table (it’s a view really) svv_roles.

(Please note the code you see here is nothing like the code you get from Redshift,
for this view; I have completely reformatted the code, moving it largely but not
quite fully (some adaptations to deal with the exigencies of this particular code)
to my own style, which makes it readable. I would note I’ve removed very large
numbers of unnecessary brackets, as well as unnecessary quoting of function
names, unnecessary casts and so on, which which makes me think the author
is an automated tool of some kind. Be aware you cannot run this code, as the
system tables pg_role and pg_identity are accessible only to the AWS root
user, rdsdb.)
select

pg_role.rolid as role_id,
pg_role.rolname::varchar(128) as role_name,
pg_identity.usename::varchar(128) as role_owner,
pg_role.externalid::varchar(128) as external_id

from
pg_role

join pg_identity on pg_identity.useid = pg_role.rolowner
where

pg_role.rolname !~~ '/%'
and pg_identity.usename !~~ 'f346c9b8%'
and
(

exists
(

select 1
from pg_identity
where pg_identity.useid = current_user_id and pg_identity.usesuper = true

)
or has_system_privilege(current_user, 'access system table')
or user_is_member_of(current_user, pg_role.rolname)
or current_user_id = pg_role.rolowner

);

8

There’s a lot to say here, but I’ll start by examining the where clause, which is
controlling whether or not rows are shown to the user.

1. Show rows to the user where the role name does not begin with a forward
slash (which if you try to use it in a role name, is an invalid character).
This view is leader node only, so I think the use of not like where will
not invoke AQUA, which is a good thing (high initial cost, then multiple
queries needed to recoup that cost).

2. Show no roles owned by user f346c9b8.
3. If the user is a super user, show the row.
4. If the user is not a super user, but holds the Redshift-style privilege access

system table, show the row.
5. If the user is not a super user, and does not hold the Redshift-style privilege

access system table, but the user has the role granted to him, show the
row.

6. If the user owns the role, show the row.

So… observations.

It’s too much code - the actual code of the view is now outweighed by the
boilerplate. In some views its worse - in svv_role_grants) the boilerplate code
is present twice, and so you have six lines of real code and about fifty lines of
boilerplate, with two extra joins and four extra selects.

The Redshift-style privilege access system table is implemented in view SQL
code; it has to be implemented correctly in every single view, and there are lots
of system table views. This, on the face of it, seems crazy; security requires
reliability - correct implementation, which in turn requires simple and compact
implementation, which is easy to test. Approaches which are risky are inherently
insecure. The code for security access should be in one place only, not at every
possible entry-point. I am also concerned here about the poor reputation of
Redshift for testing.

And now for a biggie; all of the system table views which now look like this have
been made leader node only.

This is because the has_system_privilege() and user_is_member_of() func-
tions are leader node only.

I think this is going to break a bunch of existing code out in the wild.

Finally, we can see that we see the Redshift-style privilege access system
table is also conferring the powers of syslog unrestricted; not only can
you now select from all views, but you also get to see all rows, not just your
own.

Moving on, we see as expected where this is unlike the Postgres implementation
of roles, role names are not showing in the ACL columns in system tables. The
only way to know about roles is via some new, Redshift-specific system tables,
such as svv_roles.

These new system tables, to my considerable surprise, do not show all rows to
a user with select on the table and syslog unrestricted - they only show
the rows owned by the user. This is not expected, and not consistent with prior
behaviour in all other system tables.

9

These system tables will only show all rows if the user holds the new Redshift
privilege, access system table.

I don’t know if this means the old security model is now lapsed, or if it’s an
oversight, or a blunder. It’s a problem, because the only way I can now grant
access to the rows in these system tables is by granting access to the row in all
system tables. Previously, I could pick and choose exactly which system tables
I gave access to.

Finally, with Postgres-style privileges, the GRANT syntax provides the stanza
WITH GRANT OPTION. Normally, which is to say, without WITH GRANT OPTION, a
user holds a privilege and so he can then perform the action permitted by the
privilege. However, when a privilege is granted using WITH GRANT OPTION, the
user then additionally is permitted to then, themselves, grant that privilege to
other users.

Roles have something akin to this, which is called WITH ADMIN OPTION, which
is present in the GRANT syntax when you’re granting a role. The docs make a
special effort in this matter, with this one line of text;

The WITH ADMIN OPTION clause provides the administration
options for all the granted roles to all the grantees.

Feynman once was asked to review a whole bunch of physics textbooks. It
drove him crazy - he said, none of them actually explain anything; that you
could replace the words being used with nonsense words and the power of what
was written to convey meaning would not be harmed by it.

In any event, Redshift-style privileges are granted to roles only - not to users,
not to groups - so the idea of granting a Redshift-style privilege to a role but
also indicating the role can itself then grant that privilege to others, makes no
sense. Roles can’t grant.

So the way it works is that when you grant a role to a user, it’s then you indicate
WITH ADMIN OPTION, and this means that user now has the privilege to grant
that particular role to other users.

That’s a pretty powerful capability, because roles I suspect are generally going
posses at least a couple of Redshift-style privileges, and those privileges as we’ve
seen are global, everywhere and always, and also because a role can contain many
Postgres-style privilege, and the capability to grant those multiple Postgres-style
privileges is also being conferred, although, of course, only en bloc, as the user
can grant only the role, not the individual privileges which are granted to the
role.

The Postgres-style privileges, where they are a single privilege on a single object,
inherently minimize the capability being granted. The equivalent of roles with
Postgres-style privileges would be that you grant a bunch of privileges to a
group, and then grant a user the privilege to add users to that group - but this
capability, to add users to groups, is available only to super users. There’s no
Redshift-style or Postgres-style privilege for it.

All in all, I would say that roles, and the Redshift-style privileges mechanism,
are inherently going to tend to be significantly more consequential when they
go wrong, than the Postgres-style privileges mechanism.

10

Postgres Privileges
So, there are almost all well known, and I’ve included them here for completeness.
Only the drop privilege is new.

Object Privileges
Database create, temporary
Function execute
Language usage
Procedure execute
Schema create, usage
Table drop, insert, references, select, update
View drop, select

Database

Privilege Function
create The create privilege allows the user

to create schemas in the given
database.

temporary The temporary privilege allows the
user to create temporary tables in the
given database (which is to say, to
issue. create temp table). This
privilege is not needed to use CTEs.

Function

Privilege Function
execute The execute privilege allows the user

to execute the function.

Language

Privilege Function
usage The usage privilege allows the user to

create objects which use the given
language. It is not required to
execute objects in the given language.

Procedure

11

Privilege Function
execute The execute privilege allows the user

to execute the given procedure (which
includes functions).

Schema

Privilege Function
create The create privilege allows the user

to create objects (which is to say,
anything where a schema is a valid
concept sense - a function, procedure,
table or view - in the given schema.

usage The usage privilege allows the user to
perform actions on objects in the
schema. Without it, holding
privileges on objects in the schema is
meaningless, as you the user will not
be permitted to perform any actions
on objects in the schema.

Usage is a per-schema toggle, basically; when absent, it blocks all actions on all
objects in the schema, regardless of whatever privileges a user holds.

Table

Privilege Function
drop The drop privilege allows the user to

drop the given table. This is new,
introduced late 2022. It’s not fully
ramified - there’s no drop privilege for
say databases, functions, procedures;
just tables (and views, where tables
and views are treated as much the
same, under the hood).

insert The insert privilege allows the user
to insert rows into the given table.

reference The world’s least used privilege, ever.
The reference privilege allows the
user to create a foreign key constraint
in the given table, but not you must
also hold this privilege on the foreign
table, too.

select The select privilege allows the user
to select rows from the given table.

12

Privilege Function
update The update privilege allows the user

to update rows in the given table.

View

Privilege Function
drop The drop privilege allows the user to

drop the given view. This is new,
introduced late 2022. It’s not fully
ramified - there’s no drop privilege for
say databases, functions, procedures;
just views (and tables, where tables
and views are treated as much the
same, under the hood).

select The select privilege allows the user
to select rows from the given view.

Remember that when you select rows from a view, the view will access the tables
it uses as if it were the owner of the view. If the owner has the privilege to
select from the tables, then you’re fine - and this is also how you use a view
to provide access to tables, without actually granting the privilege to select on
those tables.

If the owner does not have the necessarily privileges, then the user trying to
select from the view will be presented with a missing-privileges error (on behalf,
as it were, of the owner of the view).

Redshift Privileges
Let’s now examine the new, Redshift-style privileges.

What are they, and what do they do, and how are they organized?

To begin with, we turn to the official documentation, which we find here.

I originally wrote a lot here about the shortcomings of the docs, but it’s just
not worth the time to read.

Suffice to the say the docs are I’m afraid almost completely without value. They
are superficial, take a page at a time to convey a single fact, and lack almost
all of what would have be considered essential information, such as a list of the
Redshift-style privileges and what they actually do.

So, let’s begin by enumerating the new privileges.

This is not straightforward. There are the official docs, which has a page pre-
sumably intended to list all privileges (which tells you what privileges you need
to grant each privilege, not what each privilege does), then there’s the GRANT

13

https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html

command, which has in its syntax a slightly different list of privileges, and then
there’s what we find by examining the system table svv_system_privileges,
which lists all granted Redshift-style privileges, and that’s quite different.

docs GRANT doc page svv_system_privileges

- - access system table
alter datashare alter datashare alter datashare
alter default privileges alter default privileges alter default privileges
- - alter materialized view

row level security
alter table alter table alter table
- - alter table enable row

level security
alter user alter user alter user
analyze analyze analyze
- - attach rls policy
cancel cancel cancel
create datashare create datashare create datashare
create library create library create library
create model create model system create model
create or replace
external function

create or replace
external function

create or replace
external function

create or replace
function

create or replace
function

create or replace
function

create or replace
procedure

create or replace
procedure

create or replace stored
procedures

create or replace view create or replace view create or replace view
- - create rls policy
create role create role create role
create schema create schema create schema
create table create table create table
create user create user create user
- - detach rls policy
drop datashare drop datashare drop datashare
drop function drop function drop function
drop library drop library drop library
drop model drop model drop model
drop procedure drop procedure drop procedure
- - drop rls policy
drop role drop role drop role
drop schema drop schema drop schema
drop table drop table drop table
drop user drop user drop user
drop view drop view drop view
explain rls - explain rls
- - grant role
ignore rls - ignore rls
truncate table truncate table truncate table
vacuum vacuum vacuum

14

Note;

1. create or replace procedure is called create or replace stored
procedures in svv_system_privileges

2. system model is called system create model in svv_system_privileges

Of the privileges listed in svv_system_privileges, you cannot grant the fol-
lowing;

1. alter materialized view row level security
2. alter table enable row level security
3. attach rls policy
4. create rls policy
5. detach rls policy
6. drop rls policy

These privileges are held by one of the five built in roles, sys:secadmin. The
docs incorrectly describe this role thus;

This role has the permissions to create users, alter users, drop users,
create roles, drop roles, and grant roles. This role can have access
to user tables only when the permission is explicitly granted to the
role.

In fact this role is the only way to obtain these particular Redshift privileges.

The docs in general have issues, and what’s seen here is in line with previous
and existing issues. You cannot rely the docs; read them, but keep in mind they
may well be wrong, and in any way you can think of =-) It is not safe to simply
fully accept what’s written as correct.

I think it’s reasonable to conclude there isn’t any test code which is granting
every Redshift-style privilege and then checking it has been granted, because
that code would notice that two privileges have non-matching names in the
svv_system_privileges system table - and note here that roles came out in
April 2022, which at the time of writing, was nine months prior.

The next observation I would say is that there are a lot of privileges.

AWS seem to be taking their usual route of providing very granular permissions
- think IAM.

That’s good and bad. The good is you can exactly specify what you want to
do, and I can see that the capability to so exactly specify what you want, is
necessary given the vast number of different use cases out there; on the other
hand, it can become overwhelming.

All things considered, given the need to support an almost infinite number of
uses cases, I think AWS in this are doing the right thing, but they’ve also going
against themselves, by making the privileges global - everywhere and always.
They would be much finer grained if they could be granted for single objects.

(Redshift-style privileges cannot be granted to users, but you can make one role
per user - with the same names - and grant to that role, emulating the capability
to grant to single users. Clunky, but entirely viable.)

15

Now we’ve enumerated the privileges, let’s look at what they do; but to do this
properly, where each privilege is on the face of it a black box, I would have to
implement a test suite which tests every single aspect of Redshift behaviour,
then grant one privilege, and see what changes. That would be thorough, but
it’s too big an ask. Instead, I’ve taken each privilege in turn and assumed its
name reflects what it does, and then manually found answers to the questions
which come to mind for that particular privilege.

For some privileges (row-level security, libraries, models, etc), I’ve yet to inves-
tigate or even use that functionality in Redshift, and so to be able to think of
questions for those would require investigating each area, which again is too big
an ask for this right now.

Privilege Function
access system table Provides select access to all publicly

accessible tables and views in
pg_catalog and
information_schema. This privilege
also confers syslog unrestricted;
the user will always see all rows, not
just rows for objects the user owns.

alter datashare Not investigated.
alter default privileges Allows the user to modify default

privileges for all users (including
super users).

alter materialized view row level
security

Not investigated.

alter table Allows the alter table command to
be issued on any table (any normal
Redshift table, that is). Note this
include the capability to change the
owner, so really this privilege gives
complete control over all tables (and
views, as tables and views are seen as
the same, under the hood).

alter table enable row level security Not investigated.
alter user Allows the alter user command to

be issued on any user. A user with
this privilege can make himself super
user, so really this privilege is the
same as being super user.

analyze Allows the user to issue analyze on
any table (any normal Redshift table,
that is).

attach rls policy Not investigated.
cancel Allows the user to issue cancel on

any process, except I suspect those
owned by rsdsb - but this is difficult
to test, as such queries are fleeting.

create datashare Not investigated.

16

Privilege Function
create library Not investigated.
create model / system create model Not investigated.
create or replace external function Not investigated.
create or replace function Allows the user to create, or replace,

any function in any schema in any
database.

create or replace procedure / create
or replace stored procedures

Allows the user to create, or replace,
any procedure in any schema in any
database. If you hold this privilege,
and you want to do my PL/pgSQL
for me, that’d be just fine :-)

create or replace view Allows the user to create, or replace,
any normal or late-binding view in
any schema in any database. Does
not work for materialized views, as
they cannot be replaced (only
dropped and then re-created). Note
that when replacing a view, the
column names and types must be
unchanged, although I think there’s
some flexibility in types (varchar
lengths can change, for example), but
that’s beyond scope here.

create rls policy Not investigated.
create role Allows the user to create roles.
create schema Allows the user to create schemas, in

any database.
create table Allows the user to create normal

Redshift tables in any schema, in any
database. This includes temporary
tables.

create user Allows the user to create users, which
means being able to create a super
user, and then log in as that super
user.

detach rls policy Not investigated.
drop datashare Not investigated.
drop function Allows the user to drop any function,

in any schema, in any database,
except those owned by rdsdb.

drop library Not investigated.
drop model Not investigated.

17

Privilege Function
drop procedure Allows the user to drop any

procedure, in any schema, in any
database, except those owned by
rdsdb, but Redshift ships with no
procedures, so you’d actually have to
change the owner to rdsdb and that’s
actually not allowed :-)

drop rls policy Not investigated.
drop role Allows the user to drop roles. To drop

a role, it must be revoked from all
users, and have all privileges removed.

drop schema Allows the user to drop any schema,
in any database, except those owned
by rdsdb.

drop table Allows the user to drop any table, in
any schema, in any database, except
those own by rdsdb.

drop user Allows the user to drop any user,
including super users. As is normal
though to drop a user, the user must
own no objects or privileges, and so
typically for this privilege to be
meaningful, the holder must be able
to change ownerships, and/or drop
objects and privileges. There is no
Redshift privilege which allows a user
to change object ownerships; you
must still be the object owner, or
super user, to do this.

drop view Allows the user to drop normal views
and late-binding views, in any schema,
in any database, but not materialized
views (for this you need to use drop
materialized view, and there is no
Redshift-style privilege for this. With
normal views, the usual dependency
rules apply, so a view cannot be
dropped if other objects depend upon
it, unless the cascade option is used.

explain rls Not investigated.
grant role Allows the user to grant any role, to

any user. This includes granting the
built-in sys:superuser, which holds
every Redshift-style privilege,
including alter user, and by this
the user can then elevate themselves
to super user.

ignore rls Not investigated.

18

Privilege Function
truncate table Allows the user to issue truncate

table on any table (any normal
Redshift table, that is), in any
schema, in any database.

vacuum Allows the user to issue vacuum on
any table (any normal Redshift table,
that is), in any schema, in any
database.

So, the risky privileges are;

Privilege
alter table Allows users to take ownership of all

tables and all normal views and
late-binding views (but not
materialized views).

alter user User can make themselves super user.
create user User can create a super user, then log

in as that super user.
grant role User can grant themselves the built-in

role sys:superuser, which gives
alter user and create user.

Note with alter table, even if the user inspects pg_class to find the names
of the underlying table/view pair which are a materialized view, the user still
cannot take ownership as they are both owned by rdsdb.

Default Privileges
When granting Postgres-style privileges, a privilege is granted at the moment
it is granted, on the specified object, to the specified user; a grant never in any
way applied to objects which do not yet exist.

The reason I say this is that in the GRANT syntax there is the formulation where
you can grant privileges on all tables in a schema, like so;

grant select on all tables in schema dining_room to bob_the_skutter;.

This in my experience is often misunderstood to mean “grant this privilege on
all tables which currently exist in this schema, and all tables which will in the
future be created in this schema”.

In fact, all it means is “grant this privilege on all tables which currently exist
in this schema”.

This syntax is helper syntax only. It saves you having yourself to enumerate all
the tables in a schema and issue the grant command on each table - all it does is

19

enumerate the existing tables in the schema, and issue the grant on all of them.
Future tables are brand new objects, wholly unaffected by earlier grants.

However, it would often be rather nice if when an object is created privileges of
some kind upon it were automatically granted.

For example, we might have a group of BI users, and we will always want them
to have access to every table in the schema bi_aggregate_tables.

Rather than having to remember when making a new table in that schema to
issue the necessary grants to the BI user group, there is in fact a mechanism to
do this for us - to automatically grant privileges when an object is created.

This mechanism is known as default privileges.

Default privileges are owned by users. Each user can have none, or many, default
privileges.

A default privilege specifies an object type (function, procedure, or table (which
includes views)), a single privilege (naturally, valid for the type of object), and
a single recipient for that privilege (a user, a group, or the group-like object
public); and when the user who owns the default privilege creates an object of
that type, the given privilege is automatically granted to the recipient.

(There can be multiple default privileges for the same type of object, so creating
a table might say grant select to a number of groups, each group requiring one
default privilege for its grant, but inherently each default privilege is unique - to
issue the same default privilege twice is to specify the exact same behaviour, for
the exact same object, as already exists; it simply replaces the existing identical
default privilege with a new, identical default privilege.)

This way when a user creates, say, a table, the privilege to select from it will
automatically be granted to say a couple of different groups (this needing one
default privilege per group, since each default privilege specifies a single privilege
and a single recipient).

Finally, note that a default privilege can also have a specified a single schema,
and when this is done, the default privilege operates only for objects created
in that schema; and that a default privilege can have specified a single user,
which is the user to own the default privilege. If the user is not specified, the
current user owns the privilege - rather than all users, which can be a natural
misinterpretation of the syntax.

Default privileges are central to organizing privileges, but as a mechanism it
seems pretty unknown. I’ve seen a number of systems where the admin have
built a manual system which issues grant [priv] on all tables in schema
[schema] to group [group], which they trigger when users complain about
not being able to access tables.

With regard to Postgres and Redshift privileges, the situation is simple. Default
privileges can issue and only issue Postgres-style privileges. This is expected, as
default privileges specify an object, whereas Redshift-style privileges are global;
Redshift-style privileges have no concept of an object, but are valid on all objects,
always.

20

Conclusions
I think these new Redshift-style privileges would have been much more useful,
and safer, if they have been as with Postgres-style privileges, on a per-user, and
where applicable, a per-object basis. You can emulate per-user by making a role
per user, which is clunky but viable, but per-object is not possible.

I may be wrong, but I think we’ve got what we’ve got, which is to say global
privileges, because Postgres-style although better could technically not be done.

Looking at the implementation of roles, and the new Redshift privileges, they
have materially complicated Redshift and its use. We now have users, group and
roles, Postgres-style privileges and Redshift-style privileges, the bulky new SQL
in the system tables views is awful, and and the docs, as ever, are completely
hopeless.

I’m rather of the view the benefits of roles and the new privileges are not worth
their cost in maintainability and complexity to Redshift as a whole, particularly
so because I need strong confidence in new functionality relating to security.

There are however a couple of the new Redshift-style privileges which are par-
ticularly useful, and rather harmless; I am thinking of analyze and vacuum.
Normally both can only be issued by the owner of a table, or a super user, it is
very convenient for an ETL to issue these commands generally, and there is no
PII risk.

There is also truncate table, which again is very useful for ETL, as normally
only an owner or super user can issue this, but this is definitely not harmless -
but, still, no PII risk. You could reasonably assign this to an ETL user.

What I often see in Redshift systems is that all objects are owned by an ETL
user, with privileges granted by the ETL user to groups, to allow normal users
access. It’s a lot more natural for users to own the objects as appropriate to
user’s use, with the ETL system having the capability to perform operations
anyway.

I must say here that the official docs for roles are really, really no good; bad
enough they actually merit special mention.

A couple of the new Redshift-style privileges (alter user, create user, grant
role) are in fact properly tantamount to granting super user, as the holder can
use them to elevate themselves to super user.

I note one or two omissions in the set of Redshift-style privileges; there are
privileges relating to views, but not materialized views. There is also no privilege
to take ownership of an object, but that may be by design, as it in fact conveys
complete power over all objects (but then so do the three privileges which allow
elevation to super user).

All in all, my concerns about the reliability of implementation undercut the
usefulness of the privileges. I’d be happy using a couple of the privileges with
an ETL user - that would be very handy - but that’s about it, because of the
question of reliability.

21

Credits
1. Michael Bennett.

For wisdom regarding default privileges, that it’s possible to think if the
user is omitted, the privilege is applying to everyone, when in fact it’s
applying to the current user only.

Revision History
v1

• Initial release.

v2
• Rewrote abstract.

v3
• Added text to “Default Privileges” to mention if the user is not specified,

the default privilege is owned by the current user, not all users.
• Added the “Credits” page.

v4
• Changed to Redshift Research Project (AWS have a copyright on “Amazon

Redshift”).

22

	Introduction
	The Privileges Mechanism
	Users
	Groups
	The Group-like Object Public
	Roles
	Postgres Privileges
	Database
	Function
	Language
	Procedure
	Schema
	Table
	View

	Redshift Privileges
	Default Privileges
	Conclusions
	Credits
	Revision History
	v1
	v2
	v3
	v4

